論文の概要: Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment
- arxiv url: http://arxiv.org/abs/2405.03594v1
- Date: Mon, 6 May 2024 16:03:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 13:17:09.971288
- Title: Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment
- Title(参考訳): 効率的な事前訓練と展開による高スパーシティ基礎ラマモデルの構築
- Authors: Abhinav Agarwalla, Abhay Gupta, Alexandre Marques, Shubhra Pandit, Michael Goin, Eldar Kurtic, Kevin Leong, Tuan Nguyen, Mahmoud Salem, Dan Alistarh, Sean Lie, Mark Kurtz,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
- 参考スコア(独自算出の注目度): 56.44025052765861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks. We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs that achieve full accuracy recovery for fine-tuning tasks at up to 70% sparsity. We achieve this for the LLaMA-2 7B model by combining the SparseGPT one-shot pruning method and sparse pretraining of those models on a subset of the SlimPajama dataset mixed with a Python subset of The Stack dataset. We exhibit training acceleration due to sparsity on Cerebras CS-3 chips that closely matches theoretical scaling. In addition, we establish inference acceleration of up to 3x on CPUs by utilizing Neural Magic's DeepSparse engine and 1.7x on GPUs through Neural Magic's nm-vllm engine. The above gains are realized via sparsity alone, thus enabling further gains through additional use of quantization. Specifically, we show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x. We demonstrate these results across diverse, challenging tasks, including chat, instruction following, code generation, arithmetic reasoning, and summarization to prove their generality. This work paves the way for rapidly creating smaller and faster LLMs without sacrificing accuracy.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
本研究では,最大70%の間隔で微調整タスクの完全精度回復を実現するための,高精度で疎結合な高性能LCMを創出する手法を提案する。
我々は,SparseGPTワンショットプルーニング法と,SlimPajamaデータセットのサブセットにThe StackデータセットのPythonサブセットを混合したスパース事前学習を組み合わせることで,LLaMA-2 7Bモデルに対してこれを実現する。
本稿では,Cerebras CS-3チップにおいて,理論スケーリングと密に一致した間隔によるトレーニングアクセラレーションを示す。
さらに,Neural MagicのDeepSparseエンジンとNeural Magicのnm-vllmエンジンによるGPUの1.7xを利用して,CPU上の最大3倍の推論加速度を確立する。
上記のゲインはスパーシティーのみで実現され、量子化のさらなる利用によってさらにゲインを得られる。
具体的には、スパース量子化LLaMAモデルに対して最大8.6倍のCPU上での総高速化を示す。
これらの結果は、チャット、命令追従、コード生成、算術推論、要約など、多種多様な課題にまたがって、それらの一般化を証明する。
この研究は、精度を犠牲にすることなく、より小型で高速なLCMを迅速に作成する方法を開拓する。
関連論文リスト
- Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention [36.49445805074941]
Minference (Milliontokens Inference) は長周期処理の前処理を高速化するスパース計算法である。
我々は,MInferenceが精度を維持しつつ,A100にプリフィルする際の推論遅延を最大10倍に効果的に低減できることを実証した。
論文 参考訳(メタデータ) (2024-07-02T17:59:56Z) - FinGPT-HPC: Efficient Pretraining and Finetuning Large Language Models
for Financial Applications with High-Performance Computing [10.47214968497857]
本稿では,低ランク構造を利用した大規模言語モデルの事前学習と微調整を行う高性能手法を提案する。
本手法は精度低下を伴わずに保持できる1.3Xの高速化と2.64Xのモデル圧縮比を実現する。
ファインタニングでは,一般タスクと財務タスクの平均精度が6.3%,24.0%向上した。
論文 参考訳(メタデータ) (2024-02-21T05:03:17Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Scaling Sparse Fine-Tuning to Large Language Models [67.59697720719672]
大きな言語モデル(LLM)は、パラメータの数が多いため、完全な微調整が難しい。
本研究では,パラメータの配列とパラメータのデルタを事前学習した値に対して保持する新しいスパース微調整法SpIELを提案する。
提案手法は,LoRAのようなパラメータ効率の高い微調整法よりも性能が優れ,実行時間も同等であることを示す。
論文 参考訳(メタデータ) (2024-01-29T18:43:49Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。