論文の概要: A Reflection on Learning from Data: Epistemology Issues and Limitations
- arxiv url: http://arxiv.org/abs/2107.13270v1
- Date: Wed, 28 Jul 2021 11:05:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-29 19:48:41.776330
- Title: A Reflection on Learning from Data: Epistemology Issues and Limitations
- Title(参考訳): データから学ぶことに関する考察:認識論の問題と限界
- Authors: Ahmad Hammoudeh, Sara Tedmori and Nadim Obeid
- Abstract要約: 本稿では,データから得られた知識の問題点と限界について考察する。
この論文は、一般的な数学的理論を用いてプロセスを記述する際の欠点について、いくつかの光を当てている。
さらに、データから学ぶことに特化した理論の必要性を強調している。
- 参考スコア(独自算出の注目度): 1.8047694351309205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although learning from data is effective and has achieved significant
milestones, it has many challenges and limitations. Learning from data starts
from observations and then proceeds to broader generalizations. This framework
is controversial in science, yet it has achieved remarkable engineering
successes. This paper reflects on some epistemological issues and some of the
limitations of the knowledge discovered in data. The document discusses the
common perception that getting more data is the key to achieving better machine
learning models from theoretical and practical perspectives. The paper sheds
some light on the shortcomings of using generic mathematical theories to
describe the process. It further highlights the need for theories specialized
in learning from data. While more data leverages the performance of machine
learning models in general, the relation in practice is shown to be logarithmic
at its best; After a specific limit, more data stabilize or degrade the machine
learning models. Recent work in reinforcement learning showed that the trend is
shifting away from data-oriented approaches and relying more on algorithms. The
paper concludes that learning from data is hindered by many limitations. Hence
an approach that has an intensional orientation is needed.
- Abstract(参考訳): データから学ぶことは効果的であり、重要なマイルストーンを達成したが、多くの課題と制限がある。
データから学ぶことは観察から始まり、より広い一般化へと進む。
このフレームワークは科学では議論の余地がありますが、素晴らしいエンジニアリングの成功を達成しています。
本稿では,認識論的問題とデータから得られた知識の限界について考察する。
この文書では、より多くのデータを得ることが、理論的および実践的な観点からより良い機械学習モデルを達成するための鍵である、という一般的な認識について論じている。
この論文は、一般的な数学的理論を用いてプロセスを記述する際の欠点について、いくつかの光を当てている。
さらに、データから学ぶことに特化した理論の必要性を強調している。
より多くのデータが機械学習モデルのパフォーマンスを一般的に活用しているが、実際にはその関係性は最善の対数であることが示されている。
最近の強化学習の研究は、この傾向がデータ指向のアプローチからアルゴリズムに依存していることを示している。
論文は、データから学ぶことは多くの制限によって妨げられると結論づけている。
したがって、インテンテンション指向を持つアプローチが必要となる。
関連論文リスト
- How to unlearn a learned Machine Learning model ? [0.0]
機械学習モデルを学習し、その能力を視覚化するためのエレガントなアルゴリズムを提示します。
基礎となる数学的理論を解明し、所望のデータに対する未学習モデルの性能と望ましくないデータに対する無知の両方を評価するための具体的な指標を確立する。
論文 参考訳(メタデータ) (2024-10-13T17:38:09Z) - Introducing CausalBench: A Flexible Benchmark Framework for Causal Analysis and Machine Learning [10.686245134005047]
因果学習は従来の機械学習以上のものを目指しているが、いくつかの大きな課題が残っている。
透明で公平で使いやすい評価プラットフォームであるEm CausalBenchを紹介します。
論文 参考訳(メタデータ) (2024-09-12T22:45:10Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Breaking the Curse of Dimensionality in Deep Neural Networks by Learning
Invariant Representations [1.9580473532948401]
この論文は、これらのモデルのアーキテクチャとそれらが処理するデータ内の固有の構造との関係を研究することによって、ディープラーニングの理論的基礎を探求する。
ディープラーニングアルゴリズムの有効性を駆動するものは何か,いわゆる次元の呪いに勝てるのか,と問う。
本手法は,実験的な研究と物理に触発された玩具モデルを組み合わせることによって,深層学習に実証的なアプローチをとる。
論文 参考訳(メタデータ) (2023-10-24T19:50:41Z) - On Inductive Biases for Machine Learning in Data Constrained Settings [0.0]
この論文は、データ制約された設定で表現力のあるモデルを学ぶという問題に対する異なる答えを探求する。
ニューラルネットワークを学ぶために、大きなデータセットに頼るのではなく、データ構造を反映した既知の関数によって、いくつかのモジュールを置き換えるつもりです。
我々のアプローチは「帰納的バイアス」のフードの下に置かれており、これは探索するモデルの空間を制限する手元にあるデータの仮説として定義することができる。
論文 参考訳(メタデータ) (2023-02-21T14:22:01Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Beyond spectral gap (extended): The role of the topology in
decentralized learning [58.48291921602417]
機械学習モデルのデータ並列最適化では、労働者はモデルの推定値を改善するために協力する。
現在の理論では、コラボレーションはトレーニング単独よりも学習率が大きいことを説明していない。
本稿では,疎結合分散最適化の正確な図面を描くことを目的とする。
論文 参考訳(メタデータ) (2023-01-05T16:53:38Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Beyond spectral gap: The role of the topology in decentralized learning [58.48291921602417]
機械学習モデルのデータ並列最適化では、労働者はモデルの推定値を改善するために協力する。
本稿では、労働者が同じデータ分散を共有するとき、疎結合な分散最適化の正確な図面を描くことを目的とする。
我々の理論は深層学習における経験的観察と一致し、異なるグラフトポロジーの相対的メリットを正確に記述する。
論文 参考訳(メタデータ) (2022-06-07T08:19:06Z) - Learning from Few Examples: A Summary of Approaches to Few-Shot Learning [3.6930948691311016]
Few-Shot Learningは、いくつかのトレーニングサンプルからデータの基本パターンを学習する問題を指す。
ディープラーニングソリューションは、データ飢餓と、膨大な計算時間とリソースに悩まされている。
機械学習アプリケーション構築のターンアラウンド時間を劇的に短縮できるようなショットラーニングは、低コストのソリューションとして現れます。
論文 参考訳(メタデータ) (2022-03-07T23:15:21Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。