論文の概要: Learning from Few Examples: A Summary of Approaches to Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2203.04291v1
- Date: Mon, 7 Mar 2022 23:15:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 14:55:21.994166
- Title: Learning from Few Examples: A Summary of Approaches to Few-Shot Learning
- Title(参考訳): ごく少数の事例から学ぶ:小ショット学習へのアプローチの概要
- Authors: Archit Parnami and Minwoo Lee
- Abstract要約: Few-Shot Learningは、いくつかのトレーニングサンプルからデータの基本パターンを学習する問題を指す。
ディープラーニングソリューションは、データ飢餓と、膨大な計算時間とリソースに悩まされている。
機械学習アプリケーション構築のターンアラウンド時間を劇的に短縮できるようなショットラーニングは、低コストのソリューションとして現れます。
- 参考スコア(独自算出の注目度): 3.6930948691311016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-Shot Learning refers to the problem of learning the underlying pattern in
the data just from a few training samples. Requiring a large number of data
samples, many deep learning solutions suffer from data hunger and extensively
high computation time and resources. Furthermore, data is often not available
due to not only the nature of the problem or privacy concerns but also the cost
of data preparation. Data collection, preprocessing, and labeling are strenuous
human tasks. Therefore, few-shot learning that could drastically reduce the
turnaround time of building machine learning applications emerges as a low-cost
solution. This survey paper comprises a representative list of recently
proposed few-shot learning algorithms. Given the learning dynamics and
characteristics, the approaches to few-shot learning problems are discussed in
the perspectives of meta-learning, transfer learning, and hybrid approaches
(i.e., different variations of the few-shot learning problem).
- Abstract(参考訳): Few-Shot Learningは、いくつかのトレーニングサンプルからデータの基本パターンを学習する問題を指す。
大量のデータサンプルを必要とする深層学習ソリューションの多くは、データハンガーと膨大な計算時間とリソースに苦しむ。
さらに、問題の性質やプライバシの問題だけでなく、データ準備のコストのために、データが利用できないこともしばしばあります。
データ収集、前処理、ラベル付けは厳しい人間のタスクです。
したがって、機械学習アプリケーション構築のターンアラウンド時間を劇的に短縮できるようなショットラーニングは、低コストのソリューションとして現れます。
本研究は,最近提案された数ショット学習アルゴリズムの代表的リストを構成する。
学習力学と特徴を考慮し、メタラーニング、トランスファーラーニング、ハイブリッドアプローチ(すなわち、少数ショットラーニング問題の異なるバリエーション)の観点から、少数ショットラーニング問題に対するアプローチについて議論する。
関連論文リスト
- Imitation Learning Inputting Image Feature to Each Layer of Neural
Network [1.6574413179773757]
模倣学習は、トレーニングデータから人間の行動を学習し、再現することを可能にする。
機械学習の最近の進歩は、画像などの高次元観測データを直接処理するエンドツーエンドの学習アプローチを可能にする。
本稿では,データの影響を比較的低い相関で増幅する,この課題に対処する有用な手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T02:44:18Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
大規模で事前訓練されたモデルは、問題を解決するのに必要なタスク固有のデータの量を劇的に削減するが、多くの場合、ドメイン固有のニュアンスを箱から取り出すのに失敗する。
本稿では,NLPとマルチモーダル学習の最近の進歩を活用して,検索エンジン検索による事前学習モデルを強化する方法について述べる。
論文 参考訳(メタデータ) (2023-11-29T05:33:28Z) - Dynamic Task and Weight Prioritization Curriculum Learning for
Multimodal Imagery [0.5439020425819]
本稿では,カリキュラム学習法を訓練したマルチモーダル深層学習モデルを用いたディザスタ後の分析について検討する。
カリキュラム学習は、ますます複雑なデータに基づいてディープラーニングモデルを訓練することにより、人間の教育における進歩的な学習シーケンスをエミュレートする。
論文 参考訳(メタデータ) (2023-10-29T18:46:33Z) - On Inductive Biases for Machine Learning in Data Constrained Settings [0.0]
この論文は、データ制約された設定で表現力のあるモデルを学ぶという問題に対する異なる答えを探求する。
ニューラルネットワークを学ぶために、大きなデータセットに頼るのではなく、データ構造を反映した既知の関数によって、いくつかのモジュールを置き換えるつもりです。
我々のアプローチは「帰納的バイアス」のフードの下に置かれており、これは探索するモデルの空間を制限する手元にあるデータの仮説として定義することができる。
論文 参考訳(メタデータ) (2023-02-21T14:22:01Z) - On Measuring the Intrinsic Few-Shot Hardness of Datasets [49.37562545777455]
トレーニング済みのモデルに対して、データセットに固有の数ショットの硬さを示す。
そこで我々は,数発の学習が可能な直感をとらえる,シンプルで軽量な尺度"Spread"を提案する。
我々の測定基準は、既存の硬さの概念に比べて数発の硬さを考慮し、計算が8~100倍高速である。
論文 参考訳(メタデータ) (2022-11-16T18:53:52Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Budget-aware Few-shot Learning via Graph Convolutional Network [56.41899553037247]
本稿では,いくつかの例から新しい視覚概念を学習することを目的とした,数ショット学習の課題に取り組む。
数ショット分類における一般的な問題設定は、データラベルの取得においてランダムサンプリング戦略を前提としている。
そこで我々は,新しい対象カテゴリーの学習を目的とした,予算に配慮した数発の学習問題を新たに導入する。
論文 参考訳(メタデータ) (2022-01-07T02:46:35Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - When is Memorization of Irrelevant Training Data Necessary for
High-Accuracy Learning? [53.523017945443115]
我々は,十分な精度のトレーニングアルゴリズムが,予測モデルにおいて,そのトレーニング例の大規模サブセットに関する情報を本質的にすべてエンコードしなければならない自然予測問題を記述する。
私たちの結果は、トレーニングアルゴリズムや学習に使用されるモデルのクラスに依存しません。
論文 参考訳(メタデータ) (2020-12-11T15:25:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。