論文の概要: Quantum Technologies in the Telecommunications Industry
- arxiv url: http://arxiv.org/abs/2107.13360v1
- Date: Wed, 28 Jul 2021 13:46:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-20 17:12:30.316405
- Title: Quantum Technologies in the Telecommunications Industry
- Title(参考訳): 電気通信産業における量子技術
- Authors: Vicente Martin, Juan Pedro Brito, Carmen Escribano, Marco Menchetti,
Catherine White, Andrew Lord, Felix Wissel, Matthias Gunkel, Paulette
Gavignet, Naveena Genay, Olivier Le Moult, Carlos Abell\'an, Antonio
Manzalini, Antonio Pastor-Perales, Victor L\'opez, Diego L\'opez
- Abstract要約: これらの新技術がテレコム・ニセエーション産業にもたらす可能性を探る。
個々の量子状態の生成と操作によって可能になった可能性は、第2の量子革命への扉を開く。
- 参考スコア(独自算出の注目度): 0.1669799292354003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum based technologies have been fundamental in our world. After
producing the laser and the transistor, the devices that have shaped our modern
information society, the possibilities enabled by the ability to create and
manipulate individual quantum states opens the door to a second quantum
revolution. In this paper we explore the possibilities that these new
technologies bring to the Telecommu-nications industry
- Abstract(参考訳): 量子ベースの技術は私たちの世界では根本的です。
レーザーとトランジスタを作製した後、現代の情報社会を形成したデバイスは、個々の量子状態を作成して操作する能力によって実現され、第2の量子革命への扉を開く。
本稿では,これらの新技術がテレコムニクテーション産業にもたらす可能性について考察する。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM量子コンピュータはQPUと他のフルスタック量子コンピュータの両方をカバーする。
焦点は、Garnet QPUとそのアーキテクチャを特徴とする20量子ビットの量子コンピュータであり、最大150量子ビットまでスケールする。
QPUとシステムレベルベンチマークは、中央値の2キュービットゲート忠実度99.5%、グリーンバーガー・ホーネ・ザイリンガー(GHZ)状態の20キュービット全てを真のエンハングリングする。
論文 参考訳(メタデータ) (2024-08-22T14:26:10Z) - Quantum Communication: From Fundamentals to Recent Trends, Challenges and Open Problems [1.2277343096128712]
量子通信の新しい領域は、現代の通信技術を置き換える可能性を示している。
量子力学の原理を用いたセキュリティと情報共有能力の向上により、ネットワーク技術者や物理学者がこの技術を次世代無線システム向けに開発することを奨励している。
本稿では,量子通信の理解に必要な基本概念を構築し,重要な概念をレビューし,これらの概念をどのように活用して通信を成功させるかを示す。
論文 参考訳(メタデータ) (2024-06-06T20:35:35Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum Communication Systems: Vision, Protocols, Applications, and
Challenges [0.20999222360659603]
本稿では,量子通信,ビジョン,設計目標,情報処理,プロトコルの基本について述べる。
通信技術における量子ビットの使用は、既に既存の技術の限界を超えている。
この技術は将来の通信システムに非常に有望である。
論文 参考訳(メタデータ) (2022-12-27T01:16:24Z) - Artificial Intelligence and Machine Learning for Quantum Technologies [6.25426839308312]
ここ数年、科学者たちが機械学習を使って量子計測を分析し始めた例を紹介します。
オープンな課題と将来の可能性を強調し、今後10年間、いくつかの投機的ビジョンで締めくくります。
論文 参考訳(メタデータ) (2022-08-07T23:02:55Z) - The Quantum Internet: A Hardware Review [0.0]
量子インターネットは、量子技術における次の大きなマイルストーンだ。
本稿では,主にフォトニクスの観点から,量子インターネットのハードウェア面を概観する。
論文 参考訳(メタデータ) (2022-06-30T15:53:05Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Quantum optimal control in quantum technologies. Strategic report on
current status, visions and goals for research in Europe [0.0]
量子最適制御は、量子デバイスの操作において与えられたタスクを達成する外部フィールドの形状を考案し実装するためのツールボックスである。
オープン量子システムの制御可能性の理解の最近の進歩と量子技術への量子制御技術の開発と応用について概説する。
論文 参考訳(メタデータ) (2022-05-24T14:42:05Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
量子システムの分離・制御・絡み合いの進歩は、かつての量子力学の興味深い特徴を、破壊的な科学的・技術的進歩のための乗り物へと変えつつある。
本稿では,3つの領域科学理論家の視点から,絡み合い,複雑性,量子シミュレーションのインターフェースについて考察する。
論文 参考訳(メタデータ) (2021-07-10T06:12:06Z) - A P4 Data Plane for the Quantum Internet [68.97335984455059]
新しい-量子-ネットワークスタックは、量子絡み合いの基本的な新しい性質を説明するために必要となる。
非量子世界では、プログラム可能なデータプレーンがプロトコルスタックのオシフィケーションのパターンを破っている。
我々は、量子ネットワークの抽象化とデバイスアーキテクチャをP4$_16$で調査する方法を実証する。
論文 参考訳(メタデータ) (2020-10-21T19:37:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。