論文の概要: ReLMM: Practical RL for Learning Mobile Manipulation Skills Using Only
Onboard Sensors
- arxiv url: http://arxiv.org/abs/2107.13545v1
- Date: Wed, 28 Jul 2021 17:59:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-29 13:46:43.576459
- Title: ReLMM: Practical RL for Learning Mobile Manipulation Skills Using Only
Onboard Sensors
- Title(参考訳): ReLMM:オンボードセンサーのみを用いたモバイル操作スキル学習のための実践的RL
- Authors: Charles Sun, J\k{e}drzej Orbik, Coline Devin, Brian Yang, Abhishek
Gupta, Glen Berseth, Sergey Levine
- Abstract要約: ロボットは、ナビゲーションと把握の組み合わせを必要とするスキルを自律的に学習する方法について研究する。
我々のシステムであるReLMMは、環境機器を使わずに、現実世界のプラットフォームで継続的に学習することができる。
グラウンドカリキュラムトレーニングフェーズの後、ReLMMは、現実世界のトレーニングの約40時間で、ナビゲーションと完全に自動的なグリップを学習できる。
- 参考スコア(独自算出の注目度): 64.2809875343854
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we study how robots can autonomously learn skills that require
a combination of navigation and grasping. Learning robotic skills in the real
world remains challenging without large-scale data collection and supervision.
Our aim is to devise a robotic reinforcement learning system for learning
navigation and manipulation together, in an \textit{autonomous} way without
human intervention, enabling continual learning under realistic assumptions.
Specifically, our system, ReLMM, can learn continuously on a real-world
platform without any environment instrumentation, without human intervention,
and without access to privileged information, such as maps, objects positions,
or a global view of the environment. Our method employs a modularized policy
with components for manipulation and navigation, where uncertainty over the
manipulation success drives exploration for the navigation controller, and the
manipulation module provides rewards for navigation. We evaluate our method on
a room cleanup task, where the robot must navigate to and pick up items of
scattered on the floor. After a grasp curriculum training phase, ReLMM can
learn navigation and grasping together fully automatically, in around 40 hours
of real-world training.
- Abstract(参考訳): 本稿では,ロボットがナビゲーションと把握の組み合わせを必要とするスキルを自律的に学習する方法を検討する。
現実世界でロボットのスキルを学ぶことは、大規模なデータ収集と監督なしには難しい。
我々の目的は、人間の介入なしに、ナビゲーションと操作を同時に学習するロボット強化学習システムを考案し、現実的な仮定の下で連続的な学習を可能にすることである。
具体的には、このシステムであるrelmmは、環境計測なしで、人間の介入なしに、そして地図、オブジェクトの位置、環境のグローバルビューといった特権情報にアクセスせずに、現実世界のプラットフォーム上で継続的に学習することができる。
本手法では,操作成功に対する不確実性がナビゲーションコントローラの探索を促し,操作モジュールがナビゲーションに報奨を与えるような,操作とナビゲーションのためのコンポーネントをモジュール化したポリシを採用している。
そこで我々は,ロボットが床に散らばったアイテムを拾い上げなければならない部屋の掃除作業において,その方法を評価する。
グラウンドカリキュラムトレーニングフェーズの後、ReLMMは、現実世界のトレーニングの約40時間で、ナビゲーションと完全に自動的なグリップを学習できる。
関連論文リスト
- Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEARは、ロボットを現実世界の環境に配置し、中断することなく自律的に訓練することを可能にする。
システムはリモート、クラウドソース、非専門家からの非同期フィードバックのみを必要とする、Webインターフェースにロボットエクスペリエンスをストリームする。
論文 参考訳(メタデータ) (2023-10-31T16:43:56Z) - A Study on Learning Social Robot Navigation with Multimodal Perception [6.052803245103173]
本稿では,大規模実世界のデータセットを用いたマルチモーダル認識を用いた社会ロボットナビゲーションの学習について述べる。
我々は,一助学習と多モーダル学習のアプローチを,異なる社会シナリオにおける古典的なナビゲーション手法のセットと比較する。
その結果、マルチモーダル学習は、データセットと人的学習の両方において、一助学習よりも明らかな優位性を持つことが示された。
論文 参考訳(メタデータ) (2023-09-22T01:47:47Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
Gesture2Pathは、画像に基づく模倣学習とモデル予測制御を組み合わせた新しいソーシャルナビゲーション手法である。
実際のロボットに本手法をデプロイし,4つのジェスチャーナビゲーションシナリオに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-09-19T23:05:36Z) - Human-Aware Robot Navigation via Reinforcement Learning with Hindsight
Experience Replay and Curriculum Learning [28.045441768064215]
強化学習アプローチは、シーケンシャルな意思決定問題を解決する優れた能力を示している。
本研究では,実演データを使わずにRLエージェントを訓練する作業を検討する。
密集層における最適なナビゲーションポリシーを効率的に学習するために,後視体験リプレイ(HER)とカリキュラム学習(CL)技術をRLに組み込むことを提案する。
論文 参考訳(メタデータ) (2021-10-09T13:18:11Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
視覚的目標達成のための学習に基づくナビゲーションシステムを提案する。
提案手法は,我々がvingと呼ぶシステムが,目標条件強化学習のための提案手法を上回っていることを示す。
我々は、ラストマイル配送や倉庫検査など、現実の多くのアプリケーションでViNGを実演する。
論文 参考訳(メタデータ) (2020-12-17T18:22:32Z) - LaND: Learning to Navigate from Disengagements [158.6392333480079]
本研究では,学習者に対する学習支援のための強化学習手法(LaND)を提案する。
LaNDは現在の知覚的観察から、どのアクションが解離につながるかを予測するニューラルネットワークモデルを学び、テスト時計画で解離を回避するアクションを実行する。
以上の結果から,LaNDは多種多様な現実世界の歩道環境を学習し,模倣学習と強化学習の両方に優れることを示した。
論文 参考訳(メタデータ) (2020-10-09T17:21:42Z) - Embodied Visual Navigation with Automatic Curriculum Learning in Real
Environments [20.017277077448924]
NavACLは、ナビゲーションタスクに適した自動カリキュラム学習の方法である。
NavACLを用いて訓練した深層強化学習剤は、均一サンプリングで訓練した最先端エージェントよりも有意に優れていた。
我々のエージェントは、未知の乱雑な屋内環境から、RGB画像のみを使用して意味的に特定されたターゲットへ移動することができる。
論文 参考訳(メタデータ) (2020-09-11T13:28:26Z) - Robot Perception enables Complex Navigation Behavior via Self-Supervised
Learning [23.54696982881734]
本稿では、強化学習(RL)によるアクティブな目標駆動ナビゲーションタスクのためのロボット認識システムの統合手法を提案する。
提案手法は,1つの画像列から直接自己スーパービジョンを用いて得られる,コンパクトな動きと視覚知覚データを時間的に組み込む。
我々は,新しいインタラクティブなCityLearnフレームワークを用いて,実世界の運転データセットであるKITTIとOxford RobotCarのアプローチを実証した。
論文 参考訳(メタデータ) (2020-06-16T07:45:47Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
実世界で収集されたデータによって継続的に自律的に改善できるロボット学習システムに必要な要素について論じる。
本稿では,このようなシステムの特異なインスタンス化を事例として,デクスタラスな操作を事例として提案する。
我々は人間の介入なしに学習できることを実証し、現実世界の3本指の手で様々な視覚ベースのスキルを習得する。
論文 参考訳(メタデータ) (2020-04-27T03:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。