論文の概要: LaND: Learning to Navigate from Disengagements
- arxiv url: http://arxiv.org/abs/2010.04689v1
- Date: Fri, 9 Oct 2020 17:21:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 04:14:26.788606
- Title: LaND: Learning to Navigate from Disengagements
- Title(参考訳): LaND: 障害から学ぶこと
- Authors: Gregory Kahn, Pieter Abbeel, Sergey Levine
- Abstract要約: 本研究では,学習者に対する学習支援のための強化学習手法(LaND)を提案する。
LaNDは現在の知覚的観察から、どのアクションが解離につながるかを予測するニューラルネットワークモデルを学び、テスト時計画で解離を回避するアクションを実行する。
以上の結果から,LaNDは多種多様な現実世界の歩道環境を学習し,模倣学習と強化学習の両方に優れることを示した。
- 参考スコア(独自算出の注目度): 158.6392333480079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consistently testing autonomous mobile robots in real world scenarios is a
necessary aspect of developing autonomous navigation systems. Each time the
human safety monitor disengages the robot's autonomy system due to the robot
performing an undesirable maneuver, the autonomy developers gain insight into
how to improve the autonomy system. However, we believe that these
disengagements not only show where the system fails, which is useful for
troubleshooting, but also provide a direct learning signal by which the robot
can learn to navigate. We present a reinforcement learning approach for
learning to navigate from disengagements, or LaND. LaND learns a neural network
model that predicts which actions lead to disengagements given the current
sensory observation, and then at test time plans and executes actions that
avoid disengagements. Our results demonstrate LaND can successfully learn to
navigate in diverse, real world sidewalk environments, outperforming both
imitation learning and reinforcement learning approaches. Videos, code, and
other material are available on our website
https://sites.google.com/view/sidewalk-learning
- Abstract(参考訳): 自律移動ロボットを現実のシナリオでテストすることは、自律ナビゲーションシステムの開発に必要な側面である。
ロボットが望ましくない操作を行うため、ヒューマンセーフティモニターがロボットの自律性システムを離脱するたびに、自律性開発者は自律性システムを改善するための洞察を得る。
しかし、これらの離脱はシステムがどこで失敗するかを示すだけでなく、トラブルシューティングに役立つだけでなく、ロボットがナビゲートを学べる直接的な学習信号を提供すると信じている。
本研究では,学習者に対する学習支援のための強化学習手法,LaNDを提案する。
LaNDは現在の知覚的観察から、どのアクションが解離につながるかを予測するニューラルネットワークモデルを学び、テスト時計画で解離を回避するアクションを実行する。
以上の結果から,LaNDは多種多様な現実世界の歩道環境を学習し,模倣学習と強化学習の両方に優れることを示した。
ビデオ、コード、その他の資料は、我々のWebサイトhttps://sites.google.com/view/sidewalk-learningで入手できる。
関連論文リスト
- SELFI: Autonomous Self-Improvement with Reinforcement Learning for
Social Navigation [58.98433356015055]
体験と対話し、改善する自己改善ロボットは、ロボットシステムの現実的な展開の鍵となる。
本研究では,オンラインロボット体験を活用したオンライン学習手法であるSELFIを提案する。
本研究では, 衝突回避の観点からの改善と, より社会的に順応する行動について報告する。
論文 参考訳(メタデータ) (2024-03-01T21:27:03Z) - Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEARは、ロボットを現実世界の環境に配置し、中断することなく自律的に訓練することを可能にする。
システムはリモート、クラウドソース、非専門家からの非同期フィードバックのみを必要とする、Webインターフェースにロボットエクスペリエンスをストリームする。
論文 参考訳(メタデータ) (2023-10-31T16:43:56Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
Gesture2Pathは、画像に基づく模倣学習とモデル予測制御を組み合わせた新しいソーシャルナビゲーション手法である。
実際のロボットに本手法をデプロイし,4つのジェスチャーナビゲーションシナリオに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-09-19T23:05:36Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
本研究では,高密度で対話的な群集における安全かつ意図に配慮したロボットナビゲーションの課題について検討する。
本稿では,エージェント間の異種相互作用を捕捉するアテンション機構を備えた新しいグラフニューラルネットワークを提案する。
提案手法は,群集ナビゲーションのシナリオにおいて,優れたナビゲーション性能と非侵襲性をロボットが実現できることを実証する。
論文 参考訳(メタデータ) (2022-03-03T16:26:36Z) - Brain-Inspired Deep Imitation Learning for Autonomous Driving Systems [0.38673630752805443]
ヒトは、脳の両側の構造的および機能的非対称性から恩恵を受ける強力な一般化能力を持つ。
そこで我々は,人間のニューラルネットワークの非対称性に基づいて,ディープニューラルネットワークにおけるデュアルニューラルネットワークポリシー(NCP)アーキテクチャを設計する。
実験の結果,脳にインスパイアされた手法は,見えないデータを扱う場合の一般化に関する既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-30T14:21:46Z) - ReLMM: Practical RL for Learning Mobile Manipulation Skills Using Only
Onboard Sensors [64.2809875343854]
ロボットは、ナビゲーションと把握の組み合わせを必要とするスキルを自律的に学習する方法について研究する。
我々のシステムであるReLMMは、環境機器を使わずに、現実世界のプラットフォームで継続的に学習することができる。
グラウンドカリキュラムトレーニングフェーズの後、ReLMMは、現実世界のトレーニングの約40時間で、ナビゲーションと完全に自動的なグリップを学習できる。
論文 参考訳(メタデータ) (2021-07-28T17:59:41Z) - Robot Perception enables Complex Navigation Behavior via Self-Supervised
Learning [23.54696982881734]
本稿では、強化学習(RL)によるアクティブな目標駆動ナビゲーションタスクのためのロボット認識システムの統合手法を提案する。
提案手法は,1つの画像列から直接自己スーパービジョンを用いて得られる,コンパクトな動きと視覚知覚データを時間的に組み込む。
我々は,新しいインタラクティブなCityLearnフレームワークを用いて,実世界の運転データセットであるKITTIとOxford RobotCarのアプローチを実証した。
論文 参考訳(メタデータ) (2020-06-16T07:45:47Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
実世界で収集されたデータによって継続的に自律的に改善できるロボット学習システムに必要な要素について論じる。
本稿では,このようなシステムの特異なインスタンス化を事例として,デクスタラスな操作を事例として提案する。
我々は人間の介入なしに学習できることを実証し、現実世界の3本指の手で様々な視覚ベースのスキルを習得する。
論文 参考訳(メタデータ) (2020-04-27T03:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。