論文の概要: United We Learn Better: Harvesting Learning Improvements From Class
Hierarchies Across Tasks
- arxiv url: http://arxiv.org/abs/2107.13627v1
- Date: Wed, 28 Jul 2021 20:25:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-30 13:19:49.451432
- Title: United We Learn Better: Harvesting Learning Improvements From Class
Hierarchies Across Tasks
- Title(参考訳): United We Learn Better: タスク全体にわたるクラス階層による学習改善のハーベスティング
- Authors: Sindi Shkodrani, Yu Wang, Marco Manfredi, N\'ora Baka
- Abstract要約: 本稿では,確率と集合論に基づいて,親の予測と階層的損失を抽出する理論的枠組みを提案する。
その結果、分類と検出のベンチマークにまたがって結果が示され、シグモイドに基づく検出アーキテクチャの階層的学習の可能性が開かれた。
- 参考スコア(独自算出の注目度): 9.687531080021813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attempts of learning from hierarchical taxonomies in computer vision have
been mostly focusing on image classification. Though ways of best harvesting
learning improvements from hierarchies in classification are far from being
solved, there is a need to target these problems in other vision tasks such as
object detection. As progress on the classification side is often dependent on
hierarchical cross-entropy losses, novel detection architectures using sigmoid
as an output function instead of softmax cannot easily apply these advances,
requiring novel methods in detection. In this work we establish a theoretical
framework based on probability and set theory for extracting parent predictions
and a hierarchical loss that can be used across tasks, showing results across
classification and detection benchmarks and opening up the possibility of
hierarchical learning for sigmoid-based detection architectures.
- Abstract(参考訳): コンピュータビジョンにおける階層分類学からの学習の試みは、主に画像分類に焦点を当てている。
分類における階層からの学習改善の最良の方法はまだ解決されていないが、オブジェクト検出のような他のビジョンタスクでこれらの問題をターゲットにする必要がある。
分類面での進歩は階層的なクロスエントロピー損失に依存することが多いため、softmaxの代わりにsgmoidを出力関数として使用する新しい検出アーキテクチャは、これらの進歩を簡単に適用できず、検出に新しい方法が必要となる。
本研究では,シグモイドに基づく検出アーキテクチャにおける階層的学習の可能性を明らかにするために,確率と集合理論に基づく理論的枠組みを構築し,タスク間で使用できる階層的損失を抽出し,分類と検出ベンチマークにまたがる結果を示す。
関連論文リスト
- Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
出力層の前に配置された特定のプロジェクション演算子を備えた多出力ディープニューラルネットワークで構成されている。
このようなアーキテクチャの設計は、LH-DNN(Lexicographic Hybrid Deep Neural Network)と呼ばれ、異なる研究分野と非常に離れた研究分野のツールを組み合わせることで実現されている。
アプローチの有効性を評価するために、階層的な分類タスクに適した畳み込みニューラルネットワークであるB-CNNと比較する。
論文 参考訳(メタデータ) (2024-09-25T14:12:50Z) - Hierarchical Selective Classification [17.136832159667204]
本稿では,階層型選択分類を導入し,階層型選択分類を階層型に拡張する。
まず階層的リスクとカバレッジを形式化し、階層的リスクカバレッジ曲線を導入します。
次に、階層的選択分類のためのアルゴリズムを開発し、高い確率で目標精度の制約を保証する効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-19T12:24:30Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
特徴抽出手順と早期分類タスクを分離する動的知覚器(Dyn-Perceiver)を提案する。
特徴ブランチは画像の特徴を抽出し、分類ブランチは分類タスクに割り当てられた遅延コードを処理する。
早期出口は分類枝に限られており、低レベルの特徴において線形分離性は不要である。
論文 参考訳(メタデータ) (2023-06-20T03:00:22Z) - Fine-Grained ImageNet Classification in the Wild [0.0]
ロバストネステストは、典型的なモデル評価段階で気づかないいくつかの脆弱性やバイアスを明らかにすることができる。
本研究では,階層的知識の助けを借りて,密接に関連するカテゴリのきめ細かい分類を行う。
論文 参考訳(メタデータ) (2023-03-04T12:25:07Z) - Hierarchical classification at multiple operating points [1.520694326234112]
階層内の各クラスにスコアを割り当てる任意のメソッドに対して,演算特性曲線を生成する効率的なアルゴリズムを提案する。
2つの新しい損失関数を提案し、構造的ヒンジ損失のソフトな変形が平坦なベースラインを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-10-19T23:36:16Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
転送学習アプローチは、最近、数ショット検出タスクで有望な結果を得た。
これらのアプローチは、ベース検出器の微調整による破滅的な忘れ込みの問題に悩まされる。
この作業における上記の問題に対処する。
論文 参考訳(メタデータ) (2022-10-10T20:31:19Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
本稿では,すべての利用可能なラベルを活用でき,クラス間の階層的関係を維持できる階層型多言語表現学習フレームワークを提案する。
比較損失に階層的ペナルティを併用し,その階層的制約を強制する。
論文 参考訳(メタデータ) (2022-04-27T21:41:44Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
本研究では、ニューラルネットワークを学習して分類器をランダムにETFとして分類し、訓練中に固定する可能性について検討する。
実験結果から,バランスの取れたデータセットの画像分類において,同様の性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-17T04:34:28Z) - Provable Hierarchy-Based Meta-Reinforcement Learning [50.17896588738377]
HRLをメタRL設定で解析し、下流タスクで使用するメタトレーニング中に学習者が潜在階層構造を学習する。
我々は、この自然階層の標本効率の回復を保証し、抽出可能な楽観主義に基づくアルゴリズムとともに「多様性条件」を提供する。
我々の境界は、時間的・状態的・行動的抽象化などのHRL文献に共通する概念を取り入れており、我々の設定と分析が実際にHRLの重要な特徴を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-10-18T17:56:02Z) - Fair Hierarchical Clustering [92.03780518164108]
従来のクラスタリングにおける過剰表現を緩和する公平性の概念を定義する。
我々のアルゴリズムは、目的に対して無視できない損失しか持たない、公平な階層的なクラスタリングを見つけることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T01:05:11Z) - Learn Class Hierarchy using Convolutional Neural Networks [0.9569316316728905]
画像の階層的分類のための新しいアーキテクチャを提案し、クロスエントロピー損失関数と中心損失を組み合わせた深層線形層を導入する。
階層型分類器は,コンピュータビジョンタスクへの応用を見出す従来の分類手法の利点を示す。
論文 参考訳(メタデータ) (2020-05-18T12:06:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。