論文の概要: Harnessing Superclasses for Learning from Hierarchical Databases
- arxiv url: http://arxiv.org/abs/2411.16438v1
- Date: Mon, 25 Nov 2024 14:39:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:24:08.105098
- Title: Harnessing Superclasses for Learning from Hierarchical Databases
- Title(参考訳): 階層型データベースから学ぶスーパークラスのハーネス
- Authors: Nicolas Urbani, Sylvain Rousseau, Yves Grandvalet, Leonardo Tanzi,
- Abstract要約: 多くの大規模分類問題において、クラスは既知の階層に整理され、通常木として表される。
この種の教師付き階層分類の損失について紹介する。
提案手法では,クロスエントロピーの損失に比較して,計算コストの大幅な増大は伴わない。
- 参考スコア(独自算出の注目度): 1.835004446596942
- License:
- Abstract: In many large-scale classification problems, classes are organized in a known hierarchy, typically represented as a tree expressing the inclusion of classes in superclasses. We introduce a loss for this type of supervised hierarchical classification. It utilizes the knowledge of the hierarchy to assign each example not only to a class but also to all encompassing superclasses. Applicable to any feedforward architecture with a softmax output layer, this loss is a proper scoring rule, in that its expectation is minimized by the true posterior class probabilities. This property allows us to simultaneously pursue consistent classification objectives between superclasses and fine-grained classes, and eliminates the need for a performance trade-off between different granularities. We conduct an experimental study on three reference benchmarks, in which we vary the size of the training sets to cover a diverse set of learning scenarios. Our approach does not entail any significant additional computational cost compared with the loss of cross-entropy. It improves accuracy and reduces the number of coarse errors, with predicted labels that are distant from ground-truth labels in the tree.
- Abstract(参考訳): 多くの大規模分類問題において、クラスは既知の階層に整理され、典型的にはクラスをスーパークラスに含めることを表す木として表される。
この種の教師付き階層分類の損失について紹介する。
階層の知識を利用して、各例をクラスだけでなく、すべてのスーパークラスを包含するクラスに割り当てる。
ソフトマックス出力層を持つ任意のフィードフォワードアーキテクチャに適用できるこの損失は、真の後続クラス確率によって期待が最小化される適切なスコアリングルールである。
この特性により、スーパークラスと微粒クラス間の一貫した分類目標を同時に追求することができ、異なる粒度間のパフォーマンストレードオフを不要にすることができる。
3つの基準ベンチマークについて実験を行い、学習シナリオの多様なセットをカバーするためにトレーニングセットのサイズを変化させる。
提案手法では,クロスエントロピーの損失に比較して,計算コストの大幅な増大は伴わない。
精度を向上し、木内の接地木から離れた予測ラベルで粗いエラーの数を減らす。
関連論文リスト
- Understanding the Detrimental Class-level Effects of Data Augmentation [63.1733767714073]
最適な平均精度を達成するには、ImageNetで最大20%の個々のクラスの精度を著しく損なうコストがかかる。
本稿では,DAがクラスレベルの学習力学とどのように相互作用するかを理解するためのフレームワークを提案する。
そこで本研究では, クラス条件拡張戦略により, 負の影響を受けるクラスの性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-07T18:37:43Z) - Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
コンピュータビジョンにおける回帰タスクは、しばしば、対象空間をクラスに定量化することで分類される。
トレーニングサンプルの大多数は目標値の先頭にあるが、少数のサンプルは通常より広い尾幅に分布する。
不均衡回帰タスクを解くために階層型分類器を構築することを提案する。
不均衡回帰のための新しい階層型分類調整(HCA)は,3つのタスクにおいて優れた結果を示す。
論文 参考訳(メタデータ) (2023-10-26T04:54:39Z) - Enhancing Classification with Hierarchical Scalable Query on Fusion
Transformer [0.4129225533930965]
本稿では,学習可能な独立クエリ埋め込みによる階層的手法により,きめ細かい分類を向上する手法を提案する。
階層構造の概念を利用して、あらゆるレベルにわたってスケーラブルなクエリの埋め込みを学びます。
本手法は, 細粒度分類において, 従来の手法よりも11%の精度で性能を向上できる。
論文 参考訳(メタデータ) (2023-02-28T11:00:55Z) - Hierarchical classification at multiple operating points [1.520694326234112]
階層内の各クラスにスコアを割り当てる任意のメソッドに対して,演算特性曲線を生成する効率的なアルゴリズムを提案する。
2つの新しい損失関数を提案し、構造的ヒンジ損失のソフトな変形が平坦なベースラインを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-10-19T23:36:16Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
本稿では,すべての利用可能なラベルを活用でき,クラス間の階層的関係を維持できる階層型多言語表現学習フレームワークを提案する。
比較損失に階層的ペナルティを併用し,その階層的制約を強制する。
論文 参考訳(メタデータ) (2022-04-27T21:41:44Z) - Rank-based loss for learning hierarchical representations [7.421724671710886]
機械学習では、"extra"情報を使用するメソッドのファミリーを階層分類(hierarchical classification)と呼ぶ。
ここでは、階層的関係を表す埋め込みを学習するために、問題の階層的情報を統合する方法に焦点を当てる。
ランクに基づく損失はデータの階層的表現を学習するのに適していることを示す。
論文 参考訳(メタデータ) (2021-10-11T10:32:45Z) - Multi-Class Classification from Single-Class Data with Confidences [90.48669386745361]
本稿では,損失/モデル/最適化非依存のリスク最小化フレームワークを提案する。
提案手法は, 与えられた信頼度が高ノイズであっても, 簡易な修正でベイズ整合性を示す。
論文 参考訳(メタデータ) (2021-06-16T15:38:13Z) - No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained
Classification Problems [20.253644336965042]
実世界の分類タスクでは、各クラスは、しばしば複数のよりきめ細かい「サブクラス」を含む。
サブクラスラベルは頻繁に利用できないため、粗粒度のクラスラベルのみを使用してトレーニングされたモデルは、異なるサブクラス間で高い可変性能を示すことが多い。
本稿では,サブクラスラベルが不明な場合でも,隠れ層化を計測・緩和するGEORGEを提案する。
論文 参考訳(メタデータ) (2020-11-25T18:50:32Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance
Segmentation [75.93960390191262]
我々は、オブジェクトカテゴリ間の関係に関する事前知識を利用して、きめ細かいクラスを粗い親クラスにクラスタリングする。
そこで本研究では,NMS再サンプリング法を提案する。
提案手法はフォレストR-CNNと呼ばれ,ほとんどのオブジェクト認識モデルに適用可能なプラグイン・アンド・プレイモジュールとして機能する。
論文 参考訳(メタデータ) (2020-08-13T03:52:37Z) - Hierarchical Class-Based Curriculum Loss [18.941207332233805]
ほとんどの実世界のデータにはラベル間の依存関係があり、階層構造を使ってキャプチャできる。
i) ラベル空間に存在する階層的制約を満たすことと, (ii) 階層のレベルに基づいてラベルに一様でない重みを与えるという2つの特性を持つ損失関数, 階層的カリキュラム損失を提案する。
論文 参考訳(メタデータ) (2020-06-05T18:48:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。