論文の概要: Malware Classification Using Transfer Learning
- arxiv url: http://arxiv.org/abs/2107.13743v1
- Date: Thu, 29 Jul 2021 04:34:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-30 13:09:25.020389
- Title: Malware Classification Using Transfer Learning
- Title(参考訳): 転送学習を用いたマルウェア分類
- Authors: Hikmat Farhat and Veronica Rammouz
- Abstract要約: マルウェアの急激な分類は、その脅威に対処するための重要なツールだ。
分類において成功したアプローチの1つは、マルウェアの画像とディープラーニングに基づくものである。
ほぼ全員が、非常に短い訓練期間でマルウェアを正確に分類していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid growth of the number of devices on the Internet, malware poses
a threat not only to the affected devices but also their ability to use said
devices to launch attacks on the Internet ecosystem. Rapid malware
classification is an important tools to combat that threat. One of the
successful approaches to classification is based on malware images and deep
learning. While many deep learning architectures are very accurate they usually
take a long time to train. In this work we perform experiments on multiple well
known, pre-trained, deep network architectures in the context of transfer
learning. We show that almost all them classify malware accurately with a very
short training period.
- Abstract(参考訳): インターネット上のデバイス数の増加に伴い、マルウェアは影響を受けるデバイスだけでなく、そのデバイスを使ってインターネットエコシステムへの攻撃を開始する能力にも脅威をもたらす。
マルウェアの迅速な分類は、その脅威に対処する重要なツールである。
分類において成功したアプローチの1つは、マルウェアの画像とディープラーニングに基づくものである。
多くのディープラーニングアーキテクチャは非常に正確だが、トレーニングには通常長い時間がかかる。
本研究では、トランスファー学習の文脈で、複数のよく知られた、事前学習されたディープネットワークアーキテクチャで実験を行う。
ほぼ全員が、非常に短い訓練期間でマルウェアを正確に分類している。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Obfuscated Memory Malware Detection [2.0618817976970103]
我々は、人工知能と機械学習が、特定の難読化マルウェアのマルウェアによって引き起こされるサイバー攻撃を検知し、軽減するためにどのように使用できるかを示す。
従来のランダムフォレストアルゴリズムを用いて,89.07%の精度で3種類の難読化マルウェアを検出するマルチクラス分類モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T06:39:15Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Evil from Within: Machine Learning Backdoors through Hardware Trojans [72.99519529521919]
バックドアは、自動運転車のようなセキュリティクリティカルなシステムの整合性を損なう可能性があるため、機械学習に深刻な脅威をもたらす。
私たちは、機械学習のための一般的なハードウェアアクセラレーターに完全に存在するバックドアアタックを導入します。
我々は,Xilinx Vitis AI DPUにハードウェアトロイの木馬を埋め込むことにより,攻撃の実現可能性を示す。
論文 参考訳(メタデータ) (2023-04-17T16:24:48Z) - A Survey of Machine Learning Algorithms for Detecting Malware in IoT
Firmware [0.0]
本稿では、IoTファームウェアの分類に機械学習アルゴリズムを多数使用し、最高のパフォーマンスモデルについて報告する。
ConvolutionalやFully Connected Neural Networksといったディープラーニングアプローチも検討されている。
論文 参考訳(メタデータ) (2021-11-03T17:55:51Z) - Malware Squid: A Novel IoT Malware Traffic Analysis Framework using
Convolutional Neural Network and Binary Visualisation [2.309914459672557]
ニューラルネットワークとバイナリビジュアライゼーションを用いた新しいIoTマルウェアトラフィック分析手法を提案する。
提案手法の最大の動機は、新しいマルウェア(ゼロデイマルウェア)を素早く検出し分類することである。
論文 参考訳(メタデータ) (2021-09-08T00:21:45Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNNは、制限なく回避可能なマルウェアバリアントを自動的に生成する新しいアプローチです。
MalRNNは、3つの最近のディープラーニングベースのマルウェア検出器を効果的に回避し、現在のベンチマークメソッドを上回ります。
論文 参考訳(メタデータ) (2020-12-14T22:54:53Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Deep Learning and Open Set Malware Classification: A Survey [0.0]
最近の機械学習の研究は、機械学習におけるオープンセット認識(OSR)問題に光を当てている。
OSRシステムは、既知のクラスを正しく分類するだけでなく、未知のクラスを認識すべきである。
本調査では,さまざまなディープラーニング技術の概要,OSRとグラフ表現ソリューションの議論,マルウェア分類システムの導入について概説する。
論文 参考訳(メタデータ) (2020-04-08T21:36:21Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。