論文の概要: A Survey of Machine Learning Algorithms for Detecting Malware in IoT
Firmware
- arxiv url: http://arxiv.org/abs/2111.02388v1
- Date: Wed, 3 Nov 2021 17:55:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 14:14:17.320019
- Title: A Survey of Machine Learning Algorithms for Detecting Malware in IoT
Firmware
- Title(参考訳): IoTファームウェアにおけるマルウェア検出のための機械学習アルゴリズムの検討
- Authors: Erik Larsen, Korey MacVittie, John Lilly
- Abstract要約: 本稿では、IoTファームウェアの分類に機械学習アルゴリズムを多数使用し、最高のパフォーマンスモデルについて報告する。
ConvolutionalやFully Connected Neural Networksといったディープラーニングアプローチも検討されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work explores the use of machine learning techniques on an
Internet-of-Things firmware dataset to detect malicious attempts to infect edge
devices or subsequently corrupt an entire network. Firmware updates are
uncommon in IoT devices; hence, they abound with vulnerabilities. Attacks
against such devices can go unnoticed, and users can become a weak point in
security. Malware can cause DDoS attacks and even spy on sensitive areas like
peoples' homes. To help mitigate this threat, this paper employs a number of
machine learning algorithms to classify IoT firmware and the best performing
models are reported. In a general comparison, the top three algorithms are
Gradient Boosting, Logistic Regression, and Random Forest classifiers. Deep
learning approaches including Convolutional and Fully Connected Neural Networks
with both experimental and proven successful architectures are also explored.
- Abstract(参考訳): この研究は、iot(internet-of-things)ファームウェアデータセットで機械学習技術を使用して、エッジデバイスへの悪意のある侵入や、ネットワーク全体の破壊を検知する。
ファームウェアのアップデートはIoTデバイスでは珍しく、脆弱性が多い。
このようなデバイスに対する攻撃は気づかず、ユーザはセキュリティの弱点になる可能性がある。
マルウェアはddos攻撃を引き起こし、人々の家のような機密性の高い地域をスパイする。
この脅威を軽減するため、本論文ではiotファームウェアを分類する機械学習アルゴリズムを数多く採用し、最も優れたモデルが報告されている。
一般的な比較では、上位3つのアルゴリズムは勾配ブースティング、ロジスティック回帰、ランダムフォレスト分類器である。
ConvolutionalやFully Connected Neural Networksなど、実験的および実証済みのアーキテクチャによるディープラーニングアプローチも検討されている。
関連論文リスト
- Towards Novel Malicious Packet Recognition: A Few-Shot Learning Approach [0.0]
Deep Packet Inspection (DPI)は、ネットワークセキュリティを強化する重要な技術として登場した。
本研究では,大規模言語モデル(LLM)と少数ショット学習を活用する新しいアプローチを提案する。
提案手法は,マルウェアの種類によって平均精度86.35%,F1スコア86.40%の有望な結果を示す。
論文 参考訳(メタデータ) (2024-09-17T15:02:32Z) - Do You Trust Your Model? Emerging Malware Threats in the Deep Learning
Ecosystem [37.650342256199096]
ニューラルネットワークに自己抽出型自己実行型マルウェアを組み込むテクニックであるMaleficNet 2.0を紹介する。
MaleficNet 2.0インジェクションテクニックはステルス性があり、モデルのパフォーマンスを低下させることなく、除去テクニックに対して堅牢である。
我々は、MaleficNet 2.0を用いた概念実証型自己抽出ニューラルネットワークマルウェアを実装し、広く採用されている機械学習フレームワークに対する攻撃の実用性を実証した。
論文 参考訳(メタデータ) (2024-03-06T10:27:08Z) - Ransomware threat mitigation through network traffic analysis and
machine learning techniques [0.0]
本稿では,コンピュータネットワークにおけるランサムウェアの認識と識別方法に焦点を当てる。
このアプローチは、機械学習アルゴリズムの使用と、ネットワークトラフィックのパターンの分析に依存する。
本手法の実装により,ネットワークトラフィックに基づいて,機械学習アルゴリズムが効果的にランサムウェアを特定できることが示唆された。
論文 参考訳(メタデータ) (2024-01-27T03:55:28Z) - Machine learning-based malware detection for IoT devices using
control-flow data [0.0]
マルウェア検出のための実行ファイルの制御フロー関連データの適用性について検討する。
本稿では,2段階のマルウェア検出手法を提案する。第1フェーズでは,静的バイナリ解析を用いて制御フロー関連データを抽出する。
第2フェーズでは、ニューラルネットワークモデルを使用してバイナリ実行ファイルを悪意または良性のいずれかとして分類する。
論文 参考訳(メタデータ) (2023-11-20T08:43:09Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
ハードウェアベースのマルウェア検出アプローチは、ハードウェアパフォーマンスカウンタと機械学習技術を活用する。
このアプローチを慎重に分析し、最も一般的な方法、アルゴリズム、ツール、および輪郭を形成するデータセットを解明します。
この議論は、協調的有効性のための混合ハードウェアとソフトウェアアプローチの構築、ハードウェア監視ユニットの不可欠な拡張、ハードウェアイベントとマルウェアアプリケーションの間の相関関係の理解を深めている。
論文 参考訳(メタデータ) (2023-03-22T13:00:41Z) - Sequential Embedding-based Attentive (SEA) classifier for malware
classification [1.290382979353427]
我々は、最先端自然言語処理(NLP)技術を用いたマルウェア検出のソリューションを考案した。
提案モデルでは,それぞれ99.13パーセント,0.04パーセントの精度とログ損失スコアをベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2023-02-11T15:48:16Z) - GANG-MAM: GAN based enGine for Modifying Android Malware [1.6799377888527687]
機械学習に基づくマルウェア検出は、敵の攻撃に対して脆弱である。
そこで我々は,Androidのマルウェアを強力に回避し,悪質なプログラムを修正するための特徴ベクトルを生成するシステムを提案する。
論文 参考訳(メタデータ) (2021-09-27T18:36:20Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
脆弱性データベースのデータと組み合わせたデバイスタイプの識別は、ネットワーク内の脆弱なiotデバイスを特定できる。
信頼性の高いIoTデバイスタイプ識別のための2つの深層学習手法を提案し,評価する。
論文 参考訳(メタデータ) (2021-02-16T14:49:34Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
この研究は、データ中毒やネットワーク攻撃から学習を保護するために、セキュアな分散アルゴリズムを開発することを目的としている。
我々は,分散サポートベクトルマシン(SVM)を使用する学習者と,トレーニングデータやラベルを変更することができる攻撃者の相反する目標を捉えるためのゲーム理論の枠組みを確立する。
数値的な結果から,分散SVMは異なるタイプの攻撃で失敗する傾向にあり,ネットワーク構造や攻撃能力に強い依存があることが分かる。
論文 参考訳(メタデータ) (2020-03-08T18:54:17Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。