論文の概要: Blind Room Parameter Estimation Using Multiple-Multichannel Speech
Recordings
- arxiv url: http://arxiv.org/abs/2107.13832v1
- Date: Thu, 29 Jul 2021 08:51:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-30 18:57:44.791516
- Title: Blind Room Parameter Estimation Using Multiple-Multichannel Speech
Recordings
- Title(参考訳): 多チャンネル音声記録を用いたブラインドルームパラメータ推定
- Authors: Prerak Srivastava, Antoine Deleforge, Emmanuel Vincent
- Abstract要約: 部屋の幾何学的パラメータや音響的パラメータを知ることは、オーディオ拡張現実、音声のデバーベレーション、音声法医学などの応用に有用である。
室内の総表面積,体積,および周波数依存残響時間と平均表面吸収を共同で推定する問題について検討した。
単一チャネルとチャネル間キューの両方を活用する新しい畳み込みニューラルネットワークアーキテクチャを提案し、大規模で現実的なシミュレーションデータセットでトレーニングする。
- 参考スコア(独自算出の注目度): 37.145413836886455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowing the geometrical and acoustical parameters of a room may benefit
applications such as audio augmented reality, speech dereverberation or audio
forensics. In this paper, we study the problem of jointly estimating the total
surface area, the volume, as well as the frequency-dependent reverberation time
and mean surface absorption of a room in a blind fashion, based on two-channel
noisy speech recordings from multiple, unknown source-receiver positions. A
novel convolutional neural network architecture leveraging both single- and
inter-channel cues is proposed and trained on a large, realistic simulated
dataset. Results on both simulated and real data show that using multiple
observations in one room significantly reduces estimation errors and variances
on all target quantities, and that using two channels helps the estimation of
surface and volume. The proposed model outperforms a recently proposed blind
volume estimation method on the considered datasets.
- Abstract(参考訳): 部屋の幾何学的パラメータや音響的パラメータを知ることは、オーディオ拡張現実、音声のデバーベレーション、音声法医学などの応用に有用である。
本稿では,複数の音源受信者位置からの2チャンネル雑音音声記録に基づいて,室内の総表面積,音量,周波数依存性の残響時間,平均表面吸収をブラインド方式で同時推定する問題について検討する。
単一チャネルとチャネル間キューの両方を活用する新しい畳み込みニューラルネットワークアーキテクチャを提案し、大規模で現実的なシミュレーションデータセットでトレーニングする。
シミュレーションデータと実データの両方の結果から,1室で複数の観測値を用いた場合,全ての目標量の推定誤差やばらつきが著しく低減され,二つのチャネルが表面および体積の推定に有効であることが示唆された。
提案手法は,最近提案されたブラインドボリューム推定法よりも優れている。
関連論文リスト
- Unsupervised Blind Joint Dereverberation and Room Acoustics Estimation with Diffusion Models [21.669363620480333]
BUDDyと呼ばれるブラインド・デバーベーションと室内インパルス応答推定の教師なし手法を提案する。
室内のインパルス応答が不明な視覚的シナリオでは、BUDDyは音声の発声に成功している。
一般化に苦しむ教師付き手法とは異なり、BUDDyは異なる音響条件にシームレスに適応する。
論文 参考訳(メタデータ) (2024-08-14T11:31:32Z) - Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF)は、複数のモードから実際の音響室データをキャプチャする新しいデータセットである。
RAFは密集した室内音響データを提供する最初のデータセットである。
論文 参考訳(メタデータ) (2024-03-27T17:59:56Z) - Blind Acoustic Room Parameter Estimation Using Phase Features [4.473249957074495]
本稿では,新しい位相関連機能を活用して,近年のアプローチを拡張し,いわゆる「残響指紋」パラメータを盲目的に推定する。
これらの特徴の追加は、マグニチュードベースのスペクトル特徴のみに依存する既存の手法よりも優れていることが示されている。
論文 参考訳(メタデータ) (2023-03-13T20:05:41Z) - Audio-visual multi-channel speech separation, dereverberation and
recognition [70.34433820322323]
本稿では,音声-視覚的多チャンネル音声分離,デバーベレーション,認識手法を提案する。
音声を用いた場合の視覚的モダリティの利点は、2つのニューラルデバーベレーションアプローチでのみ示される。
LRS2データセットを用いて行った実験から,提案手法がベースラインよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-04-05T04:16:03Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
高雑音および地中設定におけるインパルス応答推定は難しい問題である。
本稿では,ニューラル表現学習の最近の進歩に基づいて,インパルス応答のパラメータ化と推定を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T18:57:23Z) - Data Fusion for Audiovisual Speaker Localization: Extending Dynamic
Stream Weights to the Spatial Domain [103.3388198420822]
複数の話者の位置を推定することは、自動音声認識や話者ダイアリゼーションなどのタスクに役立ちます。
本稿では,個別の動的ストリーム重みを特定領域に割り当てることにより,話者定位のための新しい音声視覚データ融合フレームワークを提案する。
オーディオ・ヴィジュアル・レコードを用いた性能評価は,全てのベースラインモデルより優れた融合手法により,有望な結果をもたらす。
論文 参考訳(メタデータ) (2021-02-23T09:59:31Z) - Improved MVDR Beamforming Using LSTM Speech Models to Clean Spatial
Clustering Masks [14.942060304734497]
空間クラスタリング技術は、比較的任意のマイクロホン構成で大きなマルチチャネルノイズ低減を実現することができる。
LSTMニューラルネットワークは、単一チャネル入力のノイズから音声を認識するために訓練されているが、マルチチャネル記録における情報を完全に活用することは困難である。
本稿では,これら2つのアプローチを統合し,モデルベースEMソース分離局所化法(MESSL)により生成されたマスクを除去するためにLSTM音声モデルを訓練する。
論文 参考訳(メタデータ) (2020-12-02T22:35:00Z) - On End-to-end Multi-channel Time Domain Speech Separation in Reverberant
Environments [33.79711018198589]
本稿では,残響環境におけるマルチチャンネル時間領域音声分離手法を提案する。
完全な畳み込みニューラルネットワーク構造は、複数のマイク記録から直接音声を分離するために使われてきた。
残響が空間的特徴抽出に与える影響を低減するため, 残響前処理法が適用された。
論文 参考訳(メタデータ) (2020-11-11T18:25:07Z) - Temporal-Spatial Neural Filter: Direction Informed End-to-End
Multi-channel Target Speech Separation [66.46123655365113]
ターゲット音声分離とは、混合信号からターゲット話者の音声を抽出することを指す。
主な課題は、複雑な音響環境とリアルタイム処理の要件である。
複数話者混合から対象音声波形を直接推定する時間空間ニューラルフィルタを提案する。
論文 参考訳(メタデータ) (2020-01-02T11:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。