MonoDGP: Monocular 3D Object Detection with Decoupled-Query and Geometry-Error Priors
- URL: http://arxiv.org/abs/2410.19590v1
- Date: Fri, 25 Oct 2024 14:31:43 GMT
- Title: MonoDGP: Monocular 3D Object Detection with Decoupled-Query and Geometry-Error Priors
- Authors: Fanqi Pu, Yifan Wang, Jiru Deng, Wenming Yang,
- Abstract summary: This paper presents a Transformer-based monocular 3D object detection method called MonoDGP.
It adopts perspective-invariant geometry errors to modify the projection formula.
Our method demonstrates state-of-the-art performance on the KITTI benchmark without extra data.
- Score: 24.753860375872215
- License:
- Abstract: Perspective projection has been extensively utilized in monocular 3D object detection methods. It introduces geometric priors from 2D bounding boxes and 3D object dimensions to reduce the uncertainty of depth estimation. However, due to depth errors originating from the object's visual surface, the height of the bounding box often fails to represent the actual projected central height, which undermines the effectiveness of geometric depth. Direct prediction for the projected height unavoidably results in a loss of 2D priors, while multi-depth prediction with complex branches does not fully leverage geometric depth. This paper presents a Transformer-based monocular 3D object detection method called MonoDGP, which adopts perspective-invariant geometry errors to modify the projection formula. We also try to systematically discuss and explain the mechanisms and efficacy behind geometry errors, which serve as a simple but effective alternative to multi-depth prediction. Additionally, MonoDGP decouples the depth-guided decoder and constructs a 2D decoder only dependent on visual features, providing 2D priors and initializing object queries without the disturbance of 3D detection. To further optimize and fine-tune input tokens of the transformer decoder, we also introduce a Region Segment Head (RSH) that generates enhanced features and segment embeddings. Our monocular method demonstrates state-of-the-art performance on the KITTI benchmark without extra data. Code is available at https://github.com/PuFanqi23/MonoDGP.
Related papers
- OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object
Detection [51.153003057515754]
OPA-3D is a single-stage, end-to-end, Occlusion-Aware Pixel-Wise Aggregation network.
It jointly estimates dense scene depth with depth-bounding box residuals and object bounding boxes.
It outperforms state-of-the-art methods on the main Car category.
arXiv Detail & Related papers (2022-11-02T14:19:13Z) - Monocular 3D Object Detection with Depth from Motion [74.29588921594853]
We take advantage of camera ego-motion for accurate object depth estimation and detection.
Our framework, named Depth from Motion (DfM), then uses the established geometry to lift 2D image features to the 3D space and detects 3D objects thereon.
Our framework outperforms state-of-the-art methods by a large margin on the KITTI benchmark.
arXiv Detail & Related papers (2022-07-26T15:48:46Z) - Towards Model Generalization for Monocular 3D Object Detection [57.25828870799331]
We present an effective unified camera-generalized paradigm (CGP) for Mono3D object detection.
We also propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment.
Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme.
arXiv Detail & Related papers (2022-05-23T23:05:07Z) - MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D
Object Detection [10.377424252002792]
monocular 3D object detection lacks accurate depth recovery ability.
Deep neural network (DNN) enables monocular depth-sensing from high-level learned features.
We propose a joint semantic and geometric cost volume to model the depth error.
arXiv Detail & Related papers (2022-03-16T11:54:10Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - MonoGRNet: A General Framework for Monocular 3D Object Detection [23.59839921644492]
We propose MonoGRNet for the amodal 3D object detection from a monocular image via geometric reasoning.
MonoGRNet decomposes the monocular 3D object detection task into four sub-tasks including 2D object detection, instance-level depth estimation, projected 3D center estimation and local corner regression.
Experiments are conducted on KITTI, Cityscapes and MS COCO datasets.
arXiv Detail & Related papers (2021-04-18T10:07:52Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Monocular 3D Object Detection with Decoupled Structured Polygon
Estimation and Height-Guided Depth Estimation [41.29145717658494]
This paper proposes a novel unified framework which decomposes the detection problem into a structured polygon prediction task and a depth recovery task.
Compared to the widely-used 3D bounding box proposals, it is shown to be a better representation for 3D detection.
Experiments are conducted on the challenging KITTI benchmark, in which our method achieves state-of-the-art detection accuracy.
arXiv Detail & Related papers (2020-02-05T03:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.