Self-Supervised Learning for Fine-Grained Image Classification
- URL: http://arxiv.org/abs/2107.13973v1
- Date: Thu, 29 Jul 2021 14:01:31 GMT
- Title: Self-Supervised Learning for Fine-Grained Image Classification
- Authors: Farha Al Breiki, Muhammad Ridzuan, Rushali Grandhe
- Abstract summary: Fine-grained datasets usually provide bounding box annotations along with class labels to aid the process of classification.
On the other hand, self-supervised learning exploits the freely available data to generate supervisory signals which act as labels.
Our idea is to leverage self-supervision such that the model learns useful representations of fine-grained image classes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-grained image classification involves identifying different
subcategories of a class which possess very subtle discriminatory features.
Fine-grained datasets usually provide bounding box annotations along with class
labels to aid the process of classification. However, building large scale
datasets with such annotations is a mammoth task. Moreover, this extensive
annotation is time-consuming and often requires expertise, which is a huge
bottleneck in building large datasets. On the other hand, self-supervised
learning (SSL) exploits the freely available data to generate supervisory
signals which act as labels. The features learnt by performing some pretext
tasks on huge unlabelled data proves to be very helpful for multiple downstream
tasks.
Our idea is to leverage self-supervision such that the model learns useful
representations of fine-grained image classes. We experimented with 3 kinds of
models: Jigsaw solving as pretext task, adversarial learning (SRGAN) and
contrastive learning based (SimCLR) model. The learned features are used for
downstream tasks such as fine-grained image classification. Our code is
available at
http://github.com/rush2406/Self-Supervised-Learning-for-Fine-grained-Image-Classification
Related papers
- A Self Supervised StyleGAN for Image Annotation and Classification with
Extremely Limited Labels [35.43549147657739]
We propose SS-StyleGAN, a self-supervised approach for image annotation and classification suitable for extremely small annotated datasets.
We show that the proposed method attains strong classification results using small labeled datasets of sizes 50 and even 10.
arXiv Detail & Related papers (2023-12-26T09:46:50Z) - Exploring Fine-Grained Representation and Recomposition for Cloth-Changing Person Re-Identification [78.52704557647438]
We propose a novel FIne-grained Representation and Recomposition (FIRe$2$) framework to tackle both limitations without any auxiliary annotation or data.
Experiments demonstrate that FIRe$2$ can achieve state-of-the-art performance on five widely-used cloth-changing person Re-ID benchmarks.
arXiv Detail & Related papers (2023-08-21T12:59:48Z) - Mixture of Self-Supervised Learning [2.191505742658975]
Self-supervised learning works by using a pretext task which will be trained on the model before being applied to a specific task.
Previous studies have only used one type of transformation as a pretext task.
This raises the question of how it affects if more than one pretext task is used and to use a gating network to combine all pretext tasks.
arXiv Detail & Related papers (2023-07-27T14:38:32Z) - MoBYv2AL: Self-supervised Active Learning for Image Classification [57.4372176671293]
We present MoBYv2AL, a novel self-supervised active learning framework for image classification.
Our contribution lies in lifting MoBY, one of the most successful self-supervised learning algorithms, to the AL pipeline.
We achieve state-of-the-art results when compared to recent AL methods.
arXiv Detail & Related papers (2023-01-04T10:52:02Z) - Multi-label Iterated Learning for Image Classification with Label
Ambiguity [3.5736176624479654]
We propose multi-label iterated learning (MILe) to incorporate the inductive biases of multi-label learning from single labels.
MILe is a simple yet effective procedure that builds a multi-label description of the image by propagating binary predictions.
We show that MILe is effective reducing label noise, achieving state-of-the-art performance on real-world large-scale noisy data such as WebVision.
arXiv Detail & Related papers (2021-11-23T22:10:00Z) - Few-Shot Learning for Image Classification of Common Flora [0.0]
We will showcase our results from testing various state-of-the-art transfer learning weights and architectures versus similar state-of-the-art works in the meta-learning field for image classification utilizing Model-Agnostic Meta Learning (MAML)
Our results show that both practices provide adequate performance when the dataset is sufficiently large, but that they both also struggle when data sparsity is introduced to maintain sufficient performance.
arXiv Detail & Related papers (2021-05-07T03:54:51Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
We investigate efficient annotation strategies for collecting multi-class classification labels for a large collection of images.
We propose modifications and best practices aimed at minimizing human labeling effort.
Simulated experiments on a 125k image subset of the ImageNet100 show that it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average.
arXiv Detail & Related papers (2021-04-26T16:29:32Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
This paper tackles the problem of learning a finer representation than the one provided by training labels.
By jointly leveraging the coarse labels and the underlying fine-grained latent space, it significantly improves the accuracy of category-level retrieval methods.
arXiv Detail & Related papers (2020-11-25T19:06:26Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision.
The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr.
This paper proposes the attention-aware noisy label learning approach to improve the discriminative capability of the network trained on datasets with potential label noise.
arXiv Detail & Related papers (2020-09-30T15:45:36Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
We advocate a two-step approach where feature learning and clustering are decoupled.
A self-supervised task from representation learning is employed to obtain semantically meaningful features.
We obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime.
arXiv Detail & Related papers (2020-05-25T18:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.