論文の概要: Survey of Recent Multi-Agent Reinforcement Learning Algorithms Utilizing
Centralized Training
- arxiv url: http://arxiv.org/abs/2107.14316v1
- Date: Thu, 29 Jul 2021 20:29:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-02 13:08:09.678857
- Title: Survey of Recent Multi-Agent Reinforcement Learning Algorithms Utilizing
Centralized Training
- Title(参考訳): 集中学習を活用した最近のマルチエージェント強化学習アルゴリズムの調査
- Authors: Piyush K. Sharma, Rolando Fernandez, Erin Zaroukian, Michael Dorothy,
Anjon Basak, and Derrik E. Asher
- Abstract要約: 本稿では,集中型学習のバリエーションについて論じ,アルゴリズム的アプローチに関する最近の調査について述べる。
本研究の目的は,集中学習における情報共有機構の異なる実装が,集団協調行動にどのように影響するかを検討することである。
- 参考スコア(独自算出の注目度): 0.7588690078299698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much work has been dedicated to the exploration of Multi-Agent Reinforcement
Learning (MARL) paradigms implementing a centralized learning with
decentralized execution (CLDE) approach to achieve human-like collaboration in
cooperative tasks. Here, we discuss variations of centralized training and
describe a recent survey of algorithmic approaches. The goal is to explore how
different implementations of information sharing mechanism in centralized
learning may give rise to distinct group coordinated behaviors in multi-agent
systems performing cooperative tasks.
- Abstract(参考訳): MARL(Multi-Agent Reinforcement Learning)パラダイムの探索には,協調作業における人間的なコラボレーションを実現するために,CLDE(Decentralized execution)アプローチによる集中型学習の実施に多くの作業が費やされている。
本稿では,集中型学習のバリエーションについて論じ,アルゴリズム的アプローチに関する最近の調査について述べる。
本研究の目的は,集中学習における情報共有機構の異なる実装が,協調作業を行うマルチエージェントシステムにおいて,集団協調行動にどのように影響するかを検討することである。
関連論文リスト
- Decentralized multi-agent reinforcement learning algorithm using a cluster-synchronized laser network [1.124958340749622]
競合するマルチアームバンディット問題に対処するフォトニクスに基づく意思決定アルゴリズムを提案する。
シミュレーションにより,光結合型レーザーのカオス振動とクラスタ同期,分散結合調整,探索と利用の効率向上が示された。
論文 参考訳(メタデータ) (2024-07-12T09:38:47Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Effective Multi-Agent Deep Reinforcement Learning Control with Relative
Entropy Regularization [6.441951360534903]
複数のエージェントによって制御される様々なシナリオにおいて、限られた能力とサンプル効率の問題に取り組むために、Multi-Agent Continuous Dynamic Policy Gradient (MACDPP)が提案された。
複数のエージェントのポリシー更新の不整合を緩和するために、アクター・クリティカル(AC)構造を持つ分散実行トレーニング(CTDE)フレームワークに相対エントロピー正規化を導入する。
論文 参考訳(メタデータ) (2023-09-26T07:38:19Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - Consensus Learning for Cooperative Multi-Agent Reinforcement Learning [12.74348597962689]
協調型マルチエージェント強化学習のためのコンセンサス学習を提案する。
我々は、エージェントのネットワークへの明示的な入力として、推論されたコンセンサスをフィードする。
提案手法は,様々なマルチエージェント強化学習アルゴリズムに拡張することができる。
論文 参考訳(メタデータ) (2022-06-06T12:43:07Z) - RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in
Multi-Agent Deep Reinforcement Learning [55.55009081609396]
本稿では、アドホックな協調シナリオにおいてゼロショットの一般化を実現するRACA(Relation-Aware Credit Assignment)と呼ばれる新しい手法を提案する。
RACAは、エージェント間のトポロジ構造を符号化するために、グラフベースのエンコーダ関係を利用する。
提案手法は,StarCraftIIマイクロマネジメントベンチマークとアドホック協調シナリオのベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2022-06-02T03:39:27Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z) - Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in
Cooperative Tasks [11.480994804659908]
マルチエージェント深部強化学習(MARL)は、一般的に使われている評価課題や基準の欠如に悩まされている。
我々は,MARLアルゴリズムの3つのクラスを体系的に評価し,比較する。
我々の実験は、異なる学習課題におけるアルゴリズムの期待性能の基準として機能する。
論文 参考訳(メタデータ) (2020-06-14T11:22:53Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。