論文の概要: Deep Quantized Representation for Enhanced Reconstruction
- arxiv url: http://arxiv.org/abs/2107.14368v1
- Date: Thu, 29 Jul 2021 23:22:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-02 19:48:15.317759
- Title: Deep Quantized Representation for Enhanced Reconstruction
- Title(参考訳): 拡張再構築のための深部量子化表現
- Authors: Akash Gupta, Abhishek Aich, Kevin Rodriguez, G. Venugopala Reddy, Amit
K. Roy-Chowdhury
- Abstract要約: 本研究では,シロイヌナズナのShoot Apical Meristem(SAM)における高品質画像再構成のためのデータ駆動型Deep Quantized Latent Representation(DQLR)手法を提案する。
提案フレームワークは,zスタック内の複数の連続スライスを用いて低次元の潜伏空間を学習し,それを量子化し,次いで量子化表現を用いて再構成し,よりシャープな画像を得る。
- 参考スコア(独自算出の注目度): 33.337794852677035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While machine learning approaches have shown remarkable performance in
biomedical image analysis, most of these methods rely on high-quality and
accurate imaging data. However, collecting such data requires intensive and
careful manual effort. One of the major challenges in imaging the Shoot Apical
Meristem (SAM) of Arabidopsis thaliana, is that the deeper slices in the
z-stack suffer from different perpetual quality-related problems like poor
contrast and blurring. These quality-related issues often lead to the disposal
of the painstakingly collected data with little to no control on quality while
collecting the data. Therefore, it becomes necessary to employ and design
techniques that can enhance the images to make them more suitable for further
analysis. In this paper, we propose a data-driven Deep Quantized Latent
Representation (DQLR) methodology for high-quality image reconstruction in the
Shoot Apical Meristem (SAM) of Arabidopsis thaliana. Our proposed framework
utilizes multiple consecutive slices in the z-stack to learn a low dimensional
latent space, quantize it and subsequently perform reconstruction using the
quantized representation to obtain sharper images. Experiments on a publicly
available dataset validate our methodology showing promising results.
- Abstract(参考訳): 機械学習アプローチは生体画像解析において顕著な性能を示したが、これらの手法のほとんどは高品質で正確な画像データに依存している。
しかし、このようなデータの収集には集中的で慎重な手作業が必要だ。
シロイヌナズナのメリステム(sam)の撮影における大きな課題の1つは、zスタックの深いスライスが、コントラストの低下やぼやけといった永久的品質に関わる問題に苦しむことである。
これらの品質に関する問題は、データ収集中の品質をほとんど制御することなく、苦労して収集されたデータの廃棄につながることが多い。
そのため、さらなる分析に適するように画像を強化する技術を採用し、設計する必要がある。
本稿では,シロイヌナズナのShoot Apical Meristem(SAM)における高品質画像再構成のためのデータ駆動型Deep Quantized Latent Representation(DQLR)手法を提案する。
提案フレームワークは,zスタック内の複数の連続スライスを用いて低次元の潜伏空間を学習し,それを量子化し,次いで量子化表現を用いて再構成し,よりシャープな画像を得る。
公開データセット上での実験は、有望な結果を示す方法論を検証する。
関連論文リスト
- Rethinking Image Super-Resolution from Training Data Perspectives [54.28824316574355]
画像超解像(SR)におけるトレーニングデータの効果について検討する。
そこで我々は,自動画像評価パイプラインを提案する。
その結果, (i) 圧縮アーチファクトの少ないデータセット, (ii) 被写体数によって判断される画像内多様性の高いデータセット, (iii) ImageNet や PASS からの大量の画像がSR性能に肯定的な影響を与えることがわかった。
論文 参考訳(メタデータ) (2024-09-01T16:25:04Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
本稿では,露光ブラケット写真を利用して画像復元と拡張作業を統合することを提案する。
実世界のペアの収集が困難であるため,まず合成ペアデータを用いてモデルを事前学習する手法を提案する。
特に,時間変調リカレントネットワーク(TMRNet)と自己教師あり適応手法を提案する。
論文 参考訳(メタデータ) (2024-01-01T14:14:35Z) - Generalizable Denoising of Microscopy Images using Generative
Adversarial Networks and Contrastive Learning [0.0]
数発の顕微鏡画像復調のための新しいフレームワークを提案する。
提案手法は,比較学習(CL)を用いて学習したGAN(Generative Adversarial Network)と,損失項を保存する2つの構造を組み合わせたものである。
本手法が3つのよく知られた顕微鏡画像データセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-03-27T13:55:07Z) - MSTRIQ: No Reference Image Quality Assessment Based on Swin Transformer
with Multi-Stage Fusion [8.338999282303755]
本稿では,Swin Transformerに基づく新しいアルゴリズムを提案する。
ローカル機能とグローバル機能の両方から情報を集約して、品質をより正確に予測する。
NTIRE 2022 Perceptual Image Quality Assessment Challengeのノーレファレンストラックで2位。
論文 参考訳(メタデータ) (2022-05-20T11:34:35Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychographyは、ナノメートルスケールでサンプルの非侵襲的なイメージングを可能にする、よく確立されたコヒーレント回折イメージング技術である。
Ptychographyの最大の制限は、サンプルの機械的スキャンによる長いデータ取得時間である。
本稿では,深部画像先行と深部画像先行とを組み合わせた生成モデルを提案する。
論文 参考訳(メタデータ) (2022-05-05T02:18:26Z) - Unsupervised PET Reconstruction from a Bayesian Perspective [12.512270202705404]
DeepREDはDIPと正規化を組み合わせた典型的な表現である(RED)
本稿では,ベイズ的な視点からDeepREDを活用して,教師付き情報や補助情報のない単一劣化したシングラムからPET画像の再構成を行う。
論文 参考訳(メタデータ) (2021-10-29T06:32:21Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Data augmentation for deep learning based accelerated MRI reconstruction
with limited data [46.44703053411933]
ディープニューラルネットワークは、画像復元と再構成タスクの非常に成功したツールとして登場した。
最先端のパフォーマンスを達成するためには、大規模で多様な画像集合の訓練が重要であると考えられる。
本稿では,MRI画像再構成の高速化のためのデータ拡張のためのパイプラインを提案し,必要なトレーニングデータを削減する上での有効性について検討する。
論文 参考訳(メタデータ) (2021-06-28T19:08:46Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。