論文の概要: Towards Universality in Multilingual Text Rewriting
- arxiv url: http://arxiv.org/abs/2107.14749v1
- Date: Fri, 30 Jul 2021 16:48:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-02 13:04:34.036062
- Title: Towards Universality in Multilingual Text Rewriting
- Title(参考訳): 多言語テキスト書き換えにおける普遍性に向けて
- Authors: Xavier Garcia, Noah Constant, Mandy Guo, Orhan Firat
- Abstract要約: 本モデルでは、英語の見習いのみを用いて、非英語言語でゼロショットの感情伝達を行うことができることを示す。
次に、我々のモデルが複数の属性を同時に変更できることを示します。
- 参考スコア(独自算出の注目度): 9.020426446737304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we take the first steps towards building a universal rewriter:
a model capable of rewriting text in any language to exhibit a wide variety of
attributes, including styles and languages, while preserving as much of the
original semantics as possible. In addition to obtaining state-of-the-art
results on unsupervised translation, we also demonstrate the ability to do
zero-shot sentiment transfer in non-English languages using only English
exemplars for sentiment. We then show that our model is able to modify multiple
attributes at once, for example adjusting both language and sentiment jointly.
Finally, we show that our model is capable of performing zero-shot
formality-sensitive translation.
- Abstract(参考訳): 本研究では,任意の言語でテキストの書き直しが可能で,スタイルや言語など多種多様な属性を表現できると同時に,元のセマンティクスを可能な限り保存できるモデルであるユニバーサルリライターを構築するための第一歩を踏み出した。
教師なし翻訳における最先端の成果の獲得に加えて,英語の見習いのみを用いて英語以外の言語でゼロショットの感情伝達を行う能力も示す。
次に、言語と感情を共同で調整するなど、モデルが複数の属性を同時に変更できることを示します。
最後に,本モデルはゼロショット形式性に敏感な翻訳を行うことができることを示す。
関連論文リスト
- Decoupled Vocabulary Learning Enables Zero-Shot Translation from Unseen Languages [55.157295899188476]
ニューラルマシン翻訳システムは、異なる言語の文を共通の表現空間にマッピングすることを学ぶ。
本研究では、この仮説を未知の言語からのゼロショット翻訳により検証する。
この設定により、全く見えない言語からのゼロショット翻訳が可能になることを実証する。
論文 参考訳(メタデータ) (2024-08-05T07:58:58Z) - Accelerating Multilingual Language Model for Excessively Tokenized Languages [3.5570874721859016]
大型言語モデル(LLM)のトークン化子は、文字やUnicodeレベルのトークンを非ローマ語アルファベットの言語で断片化することが多い。
このような言語でテキスト生成を高速化する,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-19T12:26:57Z) - Multilingual Text Representation [3.4447129363520337]
現代のNLPのブレークスルーには、100以上の言語でタスクを実行できる大規模な多言語モデルが含まれている。
最先端の言語モデルは、単語の単純な1ホット表現から始まり、長い道のりを歩んだ。
我々は、言語民主化の潜在能力が、既知の限界を超えてどのように得られるかについて論じる。
論文 参考訳(メタデータ) (2023-09-02T14:21:22Z) - Multilingual Conceptual Coverage in Text-to-Image Models [98.80343331645626]
コンセプチュアル・カバー・アクロス言語(Conceptual Coverage Across Languages, CoCo-CroLa)とは、任意の生成的テキスト・画像システムにおいて、有形名詞の観点から学習言語に多言語対応を提供する程度をベンチマークする手法である。
各モデルについて、ソースコード中の一連の有形名詞に生成される画像の集団と、対象言語に翻訳された各名詞に生成された画像の集団とを比較することにより、ソース言語に対して与えられた対象言語の「概念的カバレッジ」を評価することができる。
論文 参考訳(メタデータ) (2023-06-02T17:59:09Z) - Lifting the Curse of Multilinguality by Pre-training Modular
Transformers [72.46919537293068]
多言語事前訓練されたモデルは、多言語間のパフォーマンスが低下する、多言語間の呪いに苦しむ。
言語固有のモジュールを導入し、言語定数当たりのトレーニング可能なパラメータの総数を保ちながら、モデルの総容量を拡大できるようにします。
我々のアプローチは、測定可能な性能低下のないポストホック言語の追加を可能にし、モデルの使用を事前訓練された言語セットに制限しない。
論文 参考訳(メタデータ) (2022-05-12T17:59:56Z) - Generalising Multilingual Concept-to-Text NLG with Language Agnostic
Delexicalisation [0.40611352512781856]
概念からテキストへの自然言語生成は、自然言語で入力の意味を表現するタスクである。
多言語事前学習型埋め込みを用いた新しいデレクサライズ手法であるLanguage Agnostic Delexicalizationを提案する。
5つのデータセットと5つの言語で実験した結果、多言語モデルは概念対テキストで単言語モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-05-07T17:48:53Z) - Constrained Language Models Yield Few-Shot Semantic Parsers [73.50960967598654]
我々は,事前学習された大規模言語モデルの利用を,少ない意味論として検討する。
意味構文解析の目標は、自然言語入力によって構造化された意味表現を生成することである。
言語モデルを用いて、入力を英語に似た制御されたサブ言語にパラフレーズし、対象の意味表現に自動的にマッピングする。
論文 参考訳(メタデータ) (2021-04-18T08:13:06Z) - Improving Zero-Shot Translation by Disentangling Positional Information [24.02434897109097]
言語固有の表現を引き起こす主な要因は、入力トークンに対する位置対応であることを示す。
指示方向の品質を維持しながら、ゼロショット翻訳で最大18.5 BLEUポイントを得る。
論文 参考訳(メタデータ) (2020-12-30T12:20:41Z) - Morphologically Aware Word-Level Translation [82.59379608647147]
本稿では,バイリンガルレキシコン誘導のための新しい形態素認識確率モデルを提案する。
我々のモデルは、レキセメが意味の鍵となる語彙単位であるという基本的な言語的直観を生かしている。
論文 参考訳(メタデータ) (2020-11-15T17:54:49Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。