論文の概要: Accelerating Multilingual Language Model for Excessively Tokenized Languages
- arxiv url: http://arxiv.org/abs/2401.10660v2
- Date: Tue, 6 Aug 2024 08:23:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 19:31:50.218306
- Title: Accelerating Multilingual Language Model for Excessively Tokenized Languages
- Title(参考訳): 過剰なトークン化言語に対する多言語言語モデルの高速化
- Authors: Jimin Hong, Gibbeum Lee, Jaewoong Cho,
- Abstract要約: 大型言語モデル(LLM)のトークン化子は、文字やUnicodeレベルのトークンを非ローマ語アルファベットの言語で断片化することが多い。
このような言語でテキスト生成を高速化する,シンプルで効果的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.5570874721859016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large language models (LLMs) have remarkably enhanced performances on a variety of tasks in multiple languages. However, tokenizers in LLMs trained primarily on English-centric corpora often overly fragment a text into character or Unicode-level tokens in non-Roman alphabetic languages, leading to inefficient text generation. We introduce a simple yet effective framework to accelerate text generation in such languages. Our approach involves employing a new language model head with a vocabulary set tailored to a specific target language for a pre-trained LLM. This is followed by fine-tuning the new head while incorporating a verification step to ensure the model's performance is preserved. We show that this targeted fine-tuning, while freezing other model parameters, effectively reduces token fragmentation for the target language. Our extensive experiments demonstrate that the proposed framework increases the generation speed by a factor of 1.7 while maintaining the performance of pre-trained multilingual models on target monolingual tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、多言語における様々なタスクの性能を著しく向上させてきた。
しかし、LLMのトークンライザは主に英語中心のコーパスに基づいて訓練され、非ローマ文字の文字やUnicodeレベルのトークンに過度に断片化され、非効率なテキスト生成につながった。
このような言語でテキスト生成を高速化する,シンプルで効果的なフレームワークを提案する。
我々のアプローチは、事前学習されたLLMのための特定のターゲット言語に合わせた語彙セットを持つ新しい言語モデルヘッドを採用することである。
これに続いて、モデルの性能を確実に維持するための検証ステップを取り入れながら、新しいヘッドを微調整する。
この手法は,他のモデルパラメータを凍結する一方で,ターゲット言語に対するトークンのフラグメンテーションを効果的に低減することを示す。
提案するフレームワークは,対象単言語タスクにおける事前学習された多言語モデルの性能を維持しつつ,生成速度を1.7倍に向上することを示す。
関連論文リスト
- Towards Building an End-to-End Multilingual Automatic Lyrics Transcription Model [14.39119862985503]
利用可能なデータセットを用いた多言語ALTシステムの構築を目指している。
英語のALTに有効であることが証明されたアーキテクチャにヒントを得て,これらの手法を多言語シナリオに適用する。
単言語モデルと比較して,多言語モデルの性能を評価する。
論文 参考訳(メタデータ) (2024-06-25T15:02:32Z) - Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings [22.71166607645311]
本稿では,最先端のバイリンガルテキスト埋め込みモデルについて紹介する。
これらのモデルは、最大8192トークンで長いテキスト入力を処理することができる。
STSタスクのモデル性能を大幅に改善しました。
我々は、ドイツ語とスペイン語の埋め込みモデルのベンチマークを含むように、Massive Text Embedding Benchmarkを拡張した。
論文 参考訳(メタデータ) (2024-02-26T20:53:12Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。