論文の概要: Bayesian Optimization in Materials Science: A Survey
- arxiv url: http://arxiv.org/abs/2108.00002v1
- Date: Thu, 29 Jul 2021 18:45:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 07:34:30.686149
- Title: Bayesian Optimization in Materials Science: A Survey
- Title(参考訳): 材料科学におけるベイズ最適化:調査
- Authors: Lars Kotthoff and Hud Wahab and Patrick Johnson
- Abstract要約: 材料科学におけるベイズ最適化のアプローチについて調査する。
両者の間にはほとんど重複はない。
共同研究における共通の課題と機会を強調します。
- 参考スコア(独自算出の注目度): 4.037250810373225
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Bayesian optimization is used in many areas of AI for the optimization of
black-box processes and has achieved impressive improvements of the state of
the art for a lot of applications. It intelligently explores large and complex
design spaces while minimizing the number of evaluations of the expensive
underlying process to be optimized. Materials science considers the problem of
optimizing materials' properties given a large design space that defines how to
synthesize or process them, with evaluations requiring expensive experiments or
simulations -- a very similar setting. While Bayesian optimization is also a
popular approach to tackle such problems, there is almost no overlap between
the two communities that are investigating the same concepts. We present a
survey of Bayesian optimization approaches in materials science to increase
cross-fertilization and avoid duplication of work. We highlight common
challenges and opportunities for joint research efforts.
- Abstract(参考訳): ベイジアン最適化は、ブラックボックスプロセスの最適化にAIの多くの領域で使われており、多くのアプリケーションで最先端の技術の改善が達成されている。
大規模で複雑な設計空間をインテリジェントに探索し、最適化するコストのかかるプロセスの評価回数を最小化する。
材料科学は、高価な実験やシミュレーションを必要とする評価を伴って、その合成や処理方法を定義する大きな設計空間を与えられた材料特性を最適化する問題を考察している。
ベイズ最適化はそのような問題に取り組むための一般的なアプローチでもあるが、同じ概念を調査している2つのコミュニティの重なりはほとんどない。
本稿では, 材料科学におけるベイズ最適化のアプローチについて, 交配率を高め, 作業重複を回避するための調査を行う。
共同研究に共通する課題と機会を強調する。
関連論文リスト
- A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences [12.248793682283964]
個々のブラックボックス機能を最適化することは、タンパク質工学や薬物設計など、いくつかの領域において重要である。
我々は,高次元ベイズ最適化手法と標準化されたブラックボックス関数の集合を幅広くテストするための統一的なフレームワークを開発する。
これらのベンチマークの2つのコンポーネントはそれぞれ、柔軟でスケーラブルで容易に拡張可能なソフトウェアライブラリによってサポートされています。
論文 参考訳(メタデータ) (2024-06-07T08:39:40Z) - Human-Algorithm Collaborative Bayesian Optimization for Engineering Systems [0.0]
我々は、協調ベイズ最適化のためのアプローチを概説することで、データ駆動意思決定ループに人間を再導入する。
我々の手法は、人間は連続的な選択よりも離散的な選択をより効率的に行うことができるという仮説を生かしている。
本稿では, バイオプロセス最適化やリアクトル幾何設計を含む, 応用および数値ケーススタディにまたがるアプローチを実証する。
論文 参考訳(メタデータ) (2024-04-16T23:17:04Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
本研究では,非測定抽象特性に関する専門家の嗜好を代理モデルに組み込むための,人間とAIの協調型ベイズフレームワークを提案する。
優先判断において、誤った/誤解を招く専門家バイアスを処理できる効率的な戦略を提供する。
論文 参考訳(メタデータ) (2024-02-27T09:23:13Z) - Achieving Diversity in Objective Space for Sample-efficient Search of
Multiobjective Optimization Problems [4.732915763557618]
本稿では,LMS 取得機能を導入し,その挙動と特性を解析し,その実現可能性を示す。
この手法は、意思決定者に対して、将来性のある設計決定の堅牢なプールを提供し、優れたソリューションの空間をよりよく理解するのに役立つ。
論文 参考訳(メタデータ) (2023-06-23T20:42:22Z) - Transfer Learning for Bayesian Optimization: A Survey [29.229660973338145]
ブラックボックス最適化は、このような高価なブラックボックス機能をモデル化し、最適化する強力なツールである。
BOコミュニティの研究者たちは、最適化プロセスの高速化にトランスファーラーニングの精神を取り入れることを提案する。
論文 参考訳(メタデータ) (2023-02-12T14:37:25Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Fast Bayesian Optimization of Needle-in-a-Haystack Problems using
Zooming Memory-Based Initialization [73.96101108943986]
Needle-in-a-Haystack問題は、データセットのサイズに対して最適な条件が極端に不均衡であるときに発生する。
本稿では,従来のベイズ最適化原理に基づくズームメモリに基づく初期化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-26T23:57:41Z) - Optimizer Amalgamation [124.33523126363728]
私たちは、Amalgamationという新しい問題の研究を動機付けています。"Teacher"アマルガメーションのプールを、より強力な問題固有のパフォーマンスを持つ単一の"学生"にどのように組み合わせるべきなのでしょうか?
まず、勾配降下による解析のプールをアマルガメートする3つの異なるメカニズムを定義する。
また, プロセスの分散を低減するため, 目標を摂動させることでプロセスの安定化を図る。
論文 参考訳(メタデータ) (2022-03-12T16:07:57Z) - Multi-objective simulation optimization of the adhesive bonding process
of materials [50.591267188664666]
このような接着プロセスの最適プロセスパラメータを見つけることは困難である。
本研究では,ガウス過程回帰とロジスティック回帰を用いてベイズ最適化を行った。
論文 参考訳(メタデータ) (2021-12-09T09:58:58Z) - Bayesian Variational Optimization for Combinatorial Spaces [0.0]
幅広い応用としては、分子、タンパク質、DNA、デバイス構造、量子回路の設計などが挙げられる。
最適解や最適解を見つけるためには、圏空間上の最適化が不可欠である。
本稿では,変分最適化と連続緩和を組み合わせた変分ベイズ最適化手法を提案する。
論文 参考訳(メタデータ) (2020-11-03T20:56:13Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
実験者は、グローバルな最適な場所に関する知識を得ることができる。
グローバル最適化に関する専門家の事前知識をベイズ最適化に組み込む方法は不明である。
効率の良いベイズ最適化手法は、大域的最適の後方分布の後方サンプリングによって提案されている。
論文 参考訳(メタデータ) (2020-02-26T01:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。