論文の概要: Multi-objective simulation optimization of the adhesive bonding process
of materials
- arxiv url: http://arxiv.org/abs/2112.06769v1
- Date: Thu, 9 Dec 2021 09:58:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-14 18:22:28.300562
- Title: Multi-objective simulation optimization of the adhesive bonding process
of materials
- Title(参考訳): 材料の接着過程の多目的シミュレーション最適化
- Authors: Alejandro Morales-Hern\'andez, Inneke Van Nieuwenhuyse, Sebastian
Rojas Gonzalez, Jeroen Jordens, Maarten Witters, and Bart Van Doninck
- Abstract要約: このような接着プロセスの最適プロセスパラメータを見つけることは困難である。
本研究では,ガウス過程回帰とロジスティック回帰を用いてベイズ最適化を行った。
- 参考スコア(独自算出の注目度): 50.591267188664666
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automotive companies are increasingly looking for ways to make their products
lighter, using novel materials and novel bonding processes to join these
materials together. Finding the optimal process parameters for such adhesive
bonding process is challenging. In this research, we successfully applied
Bayesian optimization using Gaussian Process Regression and Logistic
Regression, to efficiently (i.e., requiring few experiments) guide the design
of experiments to the Pareto-optimal process parameter settings.
- Abstract(参考訳): 自動車企業は、新しい素材と新しいボンディングプロセスを使ってこれらの材料を結合して、製品をより軽くする方法を模索している。
このような接着プロセスの最適プロセスパラメータを見つけることは困難である。
本研究では,ガウス過程の回帰とロジスティック回帰を用いたベイズ最適化を効果的に適用し,実験の設計をパレート最適プロセスパラメータ設定に導く。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
我々は,本質的なガウス過程が実際により優れた性能を発揮することを示す。
我々の研究は、データ効率の異なるレベルを区別するために、よりきめ細かい分析が必要であることを示している。
論文 参考訳(メタデータ) (2023-09-19T20:30:58Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
論文 参考訳(メタデータ) (2023-05-31T12:07:50Z) - A Data Driven Sequential Learning Framework to Accelerate and Optimize
Multi-Objective Manufacturing Decisions [1.5771347525430772]
本稿では、逐次学習を利用して複雑なシステムを効率的に最適化する新しいデータ駆動型ベイズ最適化フレームワークを提案する。
提案フレームワークは,データ取得が高価で資源集約的な実用アプリケーションにおいて特に有用である。
提案されたデータ駆動フレームワークは、コストと時間を削減して、同様の製造上の決定を下す可能性がある。
論文 参考訳(メタデータ) (2023-04-18T20:33:08Z) - Advanced Manufacturing Configuration by Sample-efficient Batch Bayesian
Optimization [5.766036473197784]
フレームワークは、調整された取得機能、並列取得手順、およびプロセス情報の統合を統一する。
大気プラズマ溶射における最適化手法をシミュレーションおよび実験に応用する。
論文 参考訳(メタデータ) (2022-05-24T06:45:06Z) - Constrained multi-objective optimization of process design parameters in
settings with scarce data: an application to adhesive bonding [48.7576911714538]
接着プロセスに最適なプロセスパラメータを見つけることは困難である。
遺伝的アルゴリズムのような伝統的な進化的アプローチは、その問題を解決するのに不適である。
本研究では,目的関数と制約関数をエミュレートするために,特定の機械学習手法をうまく応用した。
論文 参考訳(メタデータ) (2021-12-16T10:14:39Z) - Bayesian Optimization in Materials Science: A Survey [4.037250810373225]
材料科学におけるベイズ最適化のアプローチについて調査する。
両者の間にはほとんど重複はない。
共同研究における共通の課題と機会を強調します。
論文 参考訳(メタデータ) (2021-07-29T18:45:10Z) - Multi-Objective Optimization of the Textile Manufacturing Process Using
Deep-Q-Network Based Multi-Agent Reinforcement Learning [5.900286890213338]
本稿では,最適化プロセスをゲームに変換するマルチエージェント強化学習(MARL)フレームワークを提案する。
このゲームでは,複数平衡の中断を避けるために実用的選択機構が採用された。
提案したMARLシステムは,繊維のオゾン化プロセスの最適解を実現することが可能であり,従来の手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-12-02T11:37:44Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。