Localization-enhanced dissipation in a generalized
Aubry-Andr\'{e}-Harper model coupled with Ohmic baths
- URL: http://arxiv.org/abs/2108.00265v4
- Date: Wed, 27 Jul 2022 09:07:47 GMT
- Title: Localization-enhanced dissipation in a generalized
Aubry-Andr\'{e}-Harper model coupled with Ohmic baths
- Authors: H. T. Cui, M. Qin, L.Tang, H. Z. Shen, and X. X. Yi
- Abstract summary: In contrast to the common belief that localization will preserve the information of the initial state in the system against dissipation into the environment, our study found that strong localization can enhance the dissipation of quantum information instead.
As a result, the stable or localization-enhanced decaying of excitation can be observed, dependent on the energy difference between the states of system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, the exact dynamics of excitation in the generalized
Aubry-Andr\'{e}-Harper model coupled with an Ohmic-type environment is
discussed by evaluating the survival probability and inverse participation
ratio of the state of system. In contrast to the common belief that
localization will preserve the information of the initial state in the system
against dissipation into the environment, our study found that strong
localization can enhance the dissipation of quantum information instead. By a
thorough examination of the dynamics, we show that the coherent transition
between the energy state of system is crucial for understanding this unusual
behavior. Under this circumstance, the coupling induced energy exchange between
the system and its environment can induce the periodic population of excitation
on the states of system. As a result, the stable or localization-enhanced
decaying of excitation can be observed, dependent on the energy difference
between the states of system. This point is verified in further by checking the
varying of dynamics of excitation in the system when the coupling between the
system and environment is more strong.
Related papers
- Frequency-resolved Purcell effect for the dissipative generation of
steady-state entanglement [49.1574468325115]
We report a driven-dissipative mechanism to generate stationary entangled $W$ states among strongly-interacting quantum emitters placed within a cavity.
The non-harmonic energy structure of the interacting ensemble allows this transition to be resonantly selected by the cavity.
Evidence of this purely dissipative mechanism should be observable in state-of-the-art cavity QED systems in the solid-state.
arXiv Detail & Related papers (2023-12-19T18:04:22Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - System-bath entanglement during Markovian relaxation of a fermionic
impurity [0.0]
We show that transient entanglement can be observed even in the weak coupling regime.
This entanglement vanishes for long times, but is preserved over timescales comparable to the relaxation time.
We relate the presence of such transient entanglement to the unitary character of the system-bath dynamics underlying the reduced Markovian description.
arXiv Detail & Related papers (2023-06-14T16:41:06Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Unveiling non-Markovian spacetime signalling in open quantum systems
with long-range tensor network dynamics [0.0]
We use a Matrix Product State representation of the quantum state of a system and its environment to keep track of the bath explicitly.
We predict a non-Markovian dynamics where long-range couplings induce correlations into the environment.
The environment dynamics can be naturally extracted from our method and shine a light on long time feedback effects that are responsible for the observed non-Markovian recurrences in the eigen-populations of the system.
arXiv Detail & Related papers (2021-07-23T13:28:08Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Entropic bounds on information backflow [0.0]
We exploit a regularized version of Umegaki's quantum relative entropy, known as telescopic relative entropy, that is tightly connected to the quantum Jensen-Shannon divergence.
We derive general upper bounds on the telescopic relative entropy revivals conditioned and determined by the formation of correlations and changes in the environment.
arXiv Detail & Related papers (2021-01-07T19:00:30Z) - Signatures of bath-induced quantum avalanches in a many-body--localized
system [47.187609203210705]
Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath.
We realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics.
arXiv Detail & Related papers (2020-12-30T18:34:34Z) - Hierarchical-environment-assisted non-Markovian and its effect on
thermodynamic properties [15.450802027885135]
We show how the non-Markovian character of the system is influenced by the coupling strength of system-auxiliary system and auxiliary system-reservoir.
And the information flow between the system and environment is always accompanied by energy exchange.
arXiv Detail & Related papers (2020-10-26T17:47:27Z) - Non-equilibrium steady-states of memoryless quantum collision models [0.0]
We show that only a coupling Hamiltonian in the energy-preserving form drives the system to thermal equilibrium.
We characterize the specific form of system-environment interaction that drives the system to a steady-state exhibiting coherence in the energy eigenbasis.
arXiv Detail & Related papers (2020-01-06T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.