論文の概要: Conditional Bures Metric for Domain Adaptation
- arxiv url: http://arxiv.org/abs/2108.00302v1
- Date: Sat, 31 Jul 2021 18:06:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-03 15:33:49.685347
- Title: Conditional Bures Metric for Domain Adaptation
- Title(参考訳): 条件付きバーズ計量による領域適応
- Authors: You-Wei Luo and Chuan-Xian Ren
- Abstract要約: 教師なしドメイン適応(UDA)は近年広く注目を集めている。
従来のUDA法では、ラベル分布の識別情報を無視しながら、異なるドメインの限界分布がシフトしていると仮定していた。
本研究では,現在の条件不変モデルに大きな関心を持つ条件分布シフト問題に焦点をあてる。
- 参考スコア(独自算出の注目度): 14.528711361447712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a vital problem in classification-oriented transfer, unsupervised domain
adaptation (UDA) has attracted widespread attention in recent years. Previous
UDA methods assume the marginal distributions of different domains are shifted
while ignoring the discriminant information in the label distributions. This
leads to classification performance degeneration in real applications. In this
work, we focus on the conditional distribution shift problem which is of great
concern to current conditional invariant models. We aim to seek a kernel
covariance embedding for conditional distribution which remains yet unexplored.
Theoretically, we propose the Conditional Kernel Bures (CKB) metric for
characterizing conditional distribution discrepancy, and derive an empirical
estimation for the CKB metric without introducing the implicit kernel feature
map. It provides an interpretable approach to understand the knowledge transfer
mechanism. The established consistency theory of the empirical estimation
provides a theoretical guarantee for convergence. A conditional distribution
matching network is proposed to learn the conditional invariant and
discriminative features for UDA. Extensive experiments and analysis show the
superiority of our proposed model.
- Abstract(参考訳): 近年,分類指向移行において重要な問題として,教師なしドメイン適応(UDA)が注目されている。
従来のuda法は、ラベル分布の識別情報を無視しながら、異なるドメインのマージン分布が移動すると仮定している。
これにより、実アプリケーションの分類性能が劣化する。
本研究では,現在の条件付き不変量モデルに対する大きな関心事である条件付き分布シフト問題に着目する。
我々は,まだ探索されていない条件分布のカーネル共分散埋め込みを求める。
理論的には,条件分布の不一致を特徴付ける条件付きカーネルバーズ(ckb)メトリックを提案し,暗黙的カーネル特徴マップを導入することなく,ckbメトリックの経験的推定を導出する。
知識伝達機構を理解するための解釈可能なアプローチを提供する。
経験的推定の確立された一貫性理論は収束の理論的保証を与える。
UDAの条件不変性と識別的特徴を学習するために,条件分布マッチングネットワークを提案する。
広範な実験と解析により,提案モデルの有効性が示された。
関連論文リスト
- COD: Learning Conditional Invariant Representation for Domain Adaptation Regression [20.676363400841495]
ドメイン適応回帰(Domain Adaptation Regression)は、ソースドメインからラベルのないターゲットドメインへのラベルの知識を一般化するために開発された。
既存の条件分布アライメント理論と離散前処理法はもはや適用できない。
誤差を最小限に抑えるために,CODに基づく条件付き不変表現学習モデルを提案する。
論文 参考訳(メタデータ) (2024-08-13T05:08:13Z) - Domain Adaptation with Cauchy-Schwarz Divergence [39.36943882475589]
教師なし領域適応(UDA)問題にコーシー=シュワルツの発散を導入する。
CS発散は、Kulback-Leibler発散よりも理論上より厳密な一般化誤差を提供する。
距離距離測定および対角訓練に基づくUDAフレームワークにおいて,CSのばらつきが有用であることを示す。
論文 参考訳(メタデータ) (2024-05-30T12:01:12Z) - Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift [9.530897053573186]
転送学習は、ソース分布からのデータを活用することにより、ターゲット分布の予測精度を向上させる。
本稿では,周辺情報,すなわちデータポイントの局所的構造を利用した新しい異種性尺度を提案する。
提案手法を用いて過大な誤差を特徴付けるとともに,従来の手法と比較して高速あるいは競合的な収束率を示す。
論文 参考訳(メタデータ) (2024-05-27T07:55:27Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
プロキシ変数は、遅延変数を明示的にリカバリしたりモデル化したりすることなく、分散シフトへの適応を可能にする。
両設定の複雑な分散シフトに適応する2段階のカーネル推定手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T09:32:41Z) - Learning Unbiased Transferability for Domain Adaptation by Uncertainty
Modeling [107.24387363079629]
ドメイン適応は、ラベル付けされたソースドメインからラベル付けされていない、あるいはラベル付けされていないが関連するターゲットドメインに知識を転送することを目的としています。
ソース内のアノテートされたデータの量とターゲットドメインとの間の不均衡のため、ターゲットの分布のみがソースドメインにアライメントされる。
本稿では,非暴力的非暴力的移動可能性推定プラグイン(UTEP)を提案し,非暴力的移動を最適化するDA法において,識別器の不確実性をモデル化する。
論文 参考訳(メタデータ) (2022-06-02T21:58:54Z) - Maximizing Conditional Independence for Unsupervised Domain Adaptation [9.533515002375545]
本研究では,学習者をラベル付きソースドメインから,異なる分布を持つラベル付きターゲットドメインに転送する方法について検討する。
教師なしのドメイン適応に加えて、自然かつエレガントな方法でマルチソースシナリオにメソッドを拡張します。
論文 参考訳(メタデータ) (2022-03-07T08:59:21Z) - Certainty Volume Prediction for Unsupervised Domain Adaptation [35.984559137218504]
教師なしドメイン適応(Unsupervised domain adapt, UDA)は、ラベルなしのターゲットドメインデータを分類する問題を扱う。
特徴空間における多変量ガウス分布としての不確かさをモデル化する新しい不確実性対応領域適応構成を提案する。
提案したパイプラインを、挑戦的なUDAデータセットに基づいて評価し、最先端の結果を得る。
論文 参考訳(メタデータ) (2021-11-03T11:22:55Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインから、目に見えないターゲットドメインをうまく一般化できるモデルを学ぶことを目的としている。
観測不能な共同創設者のバイアスを2段階学習で除去し,インストゥルメンタル変数駆動型DG法(IV-DG)を提案する。
第1段階では、あるドメインの入力特徴の条件分布を他のドメインの入力特徴の条件分布として学習する。
第2段階では,ラベルと学習条件分布の関係を推定する。
論文 参考訳(メタデータ) (2021-10-04T13:32:57Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
我々は、不均一(非IID)で多くのデバイスに分散する問題データを持つ領域上での分散変分不等式(VIs)を考察する。
我々は、完全に分散化された計算の設定を網羅する計算ネットワークについて、非常に一般的な仮定を行う。
理論的には, モノトン, モノトンおよび非モノトンセッティングにおける収束速度を理論的に解析する。
論文 参考訳(メタデータ) (2021-06-15T17:45:51Z) - A Unified Joint Maximum Mean Discrepancy for Domain Adaptation [73.44809425486767]
本論文は,最適化が容易なjmmdの統一形式を理論的に導出する。
統合JMMDから、JMMDは分類に有利な特徴ラベル依存を低下させることを示す。
本稿では,その依存を促進する新たなmmd行列を提案し,ラベル分布シフトにロバストな新しいラベルカーネルを考案する。
論文 参考訳(メタデータ) (2021-01-25T09:46:14Z) - Few-shot Domain Adaptation by Causal Mechanism Transfer [107.08605582020866]
我々は,少数のラベル付き対象ドメインデータと多数のラベル付きソースドメインデータしか利用できないレグレッション問題に対して,数ショットの教師付きドメイン適応(DA)について検討する。
現在のDA法の多くは、パラメータ化された分布シフトまたは明らかな分布類似性に基づく転送仮定に基づいている。
本稿では,データ生成機構がドメイン間で不変であるメタ分散シナリオであるメカニズム転送を提案する。
論文 参考訳(メタデータ) (2020-02-10T02:16:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。