論文の概要: Maximizing Conditional Independence for Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2203.03212v1
- Date: Mon, 7 Mar 2022 08:59:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-08 15:21:13.763785
- Title: Maximizing Conditional Independence for Unsupervised Domain Adaptation
- Title(参考訳): 教師なし領域適応のための条件独立性の最大化
- Authors: Yi-Ming Zhai, You-Wei Luo
- Abstract要約: 本研究では,学習者をラベル付きソースドメインから,異なる分布を持つラベル付きターゲットドメインに転送する方法について検討する。
教師なしのドメイン適応に加えて、自然かつエレガントな方法でマルチソースシナリオにメソッドを拡張します。
- 参考スコア(独自算出の注目度): 9.533515002375545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation studies how to transfer a learner from a
labeled source domain to an unlabeled target domain with different
distributions. Existing methods mainly focus on matching the marginal
distributions of the source and target domains, which probably lead a
misalignment of samples from the same class but different domains. In this
paper, we deal with this misalignment by achieving the class-conditioned
transferring from a new perspective. We aim to maximize the conditional
independence of feature and domain given class in the reproducing kernel
Hilbert space. The optimization of the conditional independence measure can be
viewed as minimizing a surrogate of a certain mutual information between
feature and domain. An interpretable empirical estimation of the conditional
dependence is deduced and connected with the unconditional case. Besides, we
provide an upper bound on the target error by taking the class-conditional
distribution into account, which provides a new theoretical insight for most
class-conditioned transferring methods. In addition to unsupervised domain
adaptation, we extend our method to the multi-source scenario in a natural and
elegant way. Extensive experiments on four benchmarks validate the
effectiveness of the proposed models in both unsupervised domain adaptation and
multiple source domain adaptation.
- Abstract(参考訳): 教師なしドメイン適応は、学習者をラベル付きソースドメインから異なる分布を持つラベル付きターゲットドメインに転送する方法を研究する。
既存の手法は主に、ソースとターゲットドメインの限界分布のマッチングに重点を置いており、おそらく同じクラスだが異なるドメインからのサンプルのミスアライメントを導く。
本稿では,新しい視点からクラス条件の移動を実現することで,この不整合に対処する。
再生カーネルヒルベルト空間における特徴クラスとドメインクラスの条件独立性を最大化する。
条件付き独立測度の最適化は、特徴と領域の間のある相互情報のサロゲートの最小化と見なすことができる。
条件依存の解釈可能な経験的推定を導出し、非条件ケースに接続する。
さらに,クラス条件分布を考慮した対象誤差の上限を提示することで,ほとんどのクラス条件伝達法に対して新たな理論的洞察を与える。
教師なしのドメイン適応に加えて、このメソッドを自然かつエレガントな方法でマルチソースシナリオに拡張します。
4つのベンチマークに関する広範囲な実験は、教師なしドメイン適応と複数ソースドメイン適応の両方における提案モデルの有効性を検証する。
関連論文リスト
- Conditional Support Alignment for Domain Adaptation with Label Shift [8.819673391477034]
アンラベルド・ドメイン適応(アンラベルド・ドメイン・アダプティブ、Unlabelled Domain adapt、UDA)とは、学習モデルを、ソース・ドメインのラベル付きサンプルと対象ドメインの教師なしサンプルに基づいて訓練するドメイン適応フレームワークである。
本稿では,対象領域の特徴表現分布に対する条件対称的サポートのばらつきを最小限に抑えることを目的とした,新しい条件逆サポートアライメント(CASA)を提案する。
論文 参考訳(メタデータ) (2023-05-29T05:20:18Z) - Domain Adaptation via Rebalanced Sub-domain Alignment [22.68115322836635]
教師なしドメイン適応(Unsupervised domain adapt, UDA)は、ラベル付きソースドメインから関連するラベル付きターゲットドメインへ知識を転送する手法である。
過去に多くのUDA手法が成功したが、ソースとターゲットドメインは同一のクラスラベルの分布を持つ必要があると仮定することが多い。
本稿では、ソースとターゲットサブドメインを整列させて、ソース分類誤差を重み付けする新しい一般化法を提案する。
論文 参考訳(メタデータ) (2023-02-03T21:30:40Z) - Constrained Maximum Cross-Domain Likelihood for Domain Generalization [14.91361835243516]
ドメインの一般化は、複数のソースドメイン上で一般化可能なモデルを学ぶことを目的としている。
本稿では,異なる領域の後方分布間のKL偏差を最小限に抑える新しい領域一般化法を提案する。
Digits-DG、PACS、Office-Home、MiniDomainNetの4つの標準ベンチマークデータセットの実験は、我々のメソッドの優れたパフォーマンスを強調している。
論文 参考訳(メタデータ) (2022-10-09T03:41:02Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
まず、適応性ギャップを明示的に考慮した一般化境界を確立する。
本稿では,目標に対するより良い仮説の選択を導くための効果的なギャップ推定法を提案する。
もう1つの方法は、オンラインターゲットサンプルを用いてモデルパラメータを適応させることにより、ギャップを最小化することである。
論文 参考訳(メタデータ) (2022-08-18T06:42:49Z) - Generalizing to Unseen Domains with Wasserstein Distributional Robustness under Limited Source Knowledge [22.285156929279207]
ドメインの一般化は、目に見えないターゲットドメインでうまく機能する普遍的なモデルを学ぶことを目的としている。
We propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG)。
論文 参考訳(メタデータ) (2022-07-11T14:46:50Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - From Big to Small: Adaptive Learning to Partial-Set Domains [94.92635970450578]
ドメイン適応は、分布シフト中のラベル付きソースドメインからラベルなしターゲットドメインへの知識獲得と普及を目標とする。
近年の進歩は、大規模の深層学習モデルにより、小規模の下流の多様な課題に取り組むための豊富な知識が得られていることを示している。
本稿では,学習パラダイムである部分領域適応(Partial Domain Adaptation, PDA)を紹介する。
論文 参考訳(メタデータ) (2022-03-14T07:02:45Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Domain Adaptation and Image Classification via Deep Conditional
Adaptation Network [26.09932710494144]
教師なしドメイン適応は、ソースドメインでトレーニングされた教師付きモデルをラベルなしのターゲットドメインに一般化することを目的としている。
特徴空間のマージ分布アライメントは、ソースとターゲットのドメイン間のドメインの差を減らすために広く用いられている。
本稿では,特徴空間の条件分布アライメントに基づく非教師なし領域適応手法であるDeep Conditional Adaptation Network (DCAN)を提案する。
論文 参考訳(メタデータ) (2020-06-14T02:56:01Z) - A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation [142.31610972922067]
この研究は、特にターゲットドメインのクラスラベルがソースドメインのサブセットである場合に、教師なしのドメイン適応問題に対処する。
本稿では,ドメイン逆境学習に基づく新しいドメイン適応手法 BA$3$US を提案し,BAA(Ba balanced Adversarial Alignment)とAUS(Adaptive Uncertainty Suppression)の2つの新しい手法を提案する。
複数のベンチマーク実験の結果、BA$3$USが部分的なドメイン適応タスクの最先端を超越していることが示されている。
論文 参考訳(メタデータ) (2020-03-05T11:37:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。