論文の概要: ELLIPSDF: Joint Object Pose and Shape Optimization with a Bi-level
Ellipsoid and Signed Distance Function Description
- arxiv url: http://arxiv.org/abs/2108.00355v1
- Date: Sun, 1 Aug 2021 03:07:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-04 09:36:55.831207
- Title: ELLIPSDF: Joint Object Pose and Shape Optimization with a Bi-level
Ellipsoid and Signed Distance Function Description
- Title(参考訳): ellipsdf:バイレベル楕円と符号付き距離関数記述による関節物体のポーズと形状最適化
- Authors: Mo Shan, Qiaojun Feng, You-Yi Jau, Nikolay Atanasov
- Abstract要約: 本稿では,関節オブジェクトのポーズと形状最適化のための表現的かつコンパクトなモデルを提案する。
多視点RGB-Dカメラ観測からオブジェクトレベルのマップを推論する。
提案手法は,大規模実世界のScanNetデータセットを用いて評価し,最先端の手法と比較する。
- 参考スコア(独自算出の注目度): 9.734266860544663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous systems need to understand the semantics and geometry of their
surroundings in order to comprehend and safely execute object-level task
specifications. This paper proposes an expressive yet compact model for joint
object pose and shape optimization, and an associated optimization algorithm to
infer an object-level map from multi-view RGB-D camera observations. The model
is expressive because it captures the identities, positions, orientations, and
shapes of objects in the environment. It is compact because it relies on a
low-dimensional latent representation of implicit object shape, allowing
onboard storage of large multi-category object maps. Different from other works
that rely on a single object representation format, our approach has a bi-level
object model that captures both the coarse level scale as well as the fine
level shape details. Our approach is evaluated on the large-scale real-world
ScanNet dataset and compared against state-of-the-art methods.
- Abstract(参考訳): 自律システムは、オブジェクトレベルのタスク仕様を理解し安全に実行するために、環境の意味と幾何学を理解する必要がある。
本稿では,複数視点のRGB-Dカメラ観測からオブジェクトレベルマップを推定するための,共同オブジェクトポーズと形状最適化のための表現的かつコンパクトなモデルを提案する。
モデルは、環境中の物体のアイデンティティ、位置、方向、形状をキャプチャするので、表現力がある。
これは、暗黙のオブジェクト形状の低次元潜在表現に依存しており、大きなマルチカテゴリオブジェクトマップのオンボード保存を可能にするためコンパクトである。
単一オブジェクト表現フォーマットに依存する他の作品とは異なり、我々のアプローチは粗いレベルのスケールと細かいレベルの形状の詳細の両方をキャプチャする双レベルオブジェクトモデルを持っています。
本手法は大規模実世界のscannetデータセット上で評価し,最先端手法と比較した。
関連論文リスト
- VOOM: Robust Visual Object Odometry and Mapping using Hierarchical
Landmarks [19.789761641342043]
本稿では,ビジュアルオブジェクトのオドメトリとマッピングフレームワーク VOOM を提案する。
粗い方法で階層的なランドマークとして、高レベルのオブジェクトと低レベルのポイントを使用します。
VOOMはオブジェクト指向SLAMと特徴点SLAMシステムの両方をローカライゼーションで上回る。
論文 参考訳(メタデータ) (2024-02-21T08:22:46Z) - FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects [55.77542145604758]
FoundationPoseは、6Dオブジェクトのポーズ推定と追跡のための統合基盤モデルである。
我々のアプローチは、微調整なしで、テスト時に新しいオブジェクトに即座に適用できる。
論文 参考訳(メタデータ) (2023-12-13T18:28:09Z) - An Object SLAM Framework for Association, Mapping, and High-Level Tasks [12.62957558651032]
本稿では,オブジェクト指向認識とオブジェクト指向ロボットタスクに焦点を当てた包括的オブジェクトSLAMフレームワークを提案する。
提案したオブジェクトSLAMフレームワークを効率よく評価するために,さまざまな公開データセットと実世界の結果が使用されている。
論文 参考訳(メタデータ) (2023-05-12T08:10:14Z) - Loop Closure Detection Based on Object-level Spatial Layout and Semantic
Consistency [14.694754836704819]
本稿では3次元シーングラフの空間的レイアウトとセマンティック一貫性に基づくオブジェクトベースのループ閉包検出手法を提案する。
実験により,提案手法によりより正確な3次元意味マップを構築可能であることが示された。
論文 参考訳(メタデータ) (2023-04-11T11:20:51Z) - Category-level Shape Estimation for Densely Cluttered Objects [94.64287790278887]
そこで本研究では,密に散らばった物体のカテゴリレベルの形状推定手法を提案する。
我々のフレームワークは、多視点視覚情報融合によって、各オブジェクトをクラッタに分割する。
シミュレーション環境と実世界の実験から,本手法が高精度な形状推定を実現することが示された。
論文 参考訳(メタデータ) (2023-02-23T13:00:17Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPoseは、トレーニング中に見えない新しいオブジェクトの6Dポーズを推定する方法である。
本稿では,新しいオブジェクトに適用可能なR&Compare戦略に基づく6次元ポーズリファインダを提案する。
第2に,合成レンダリングと同一物体の観察画像間のポーズ誤差をリファインダで補正できるか否かを分類するために訓練されたネットワークを利用する,粗いポーズ推定のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-12-13T19:30:03Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
本稿では,1枚のRGB-D画像からカテゴリレベルのオブジェクト形状とポーズ推定を行う新しいフレームワークを提案する。
カテゴリ内変動に対処するために、様々な形状を統一された潜在空間にエンコードするセマンティックプリミティブ表現を採用する。
提案手法は,実世界のデータセットにおいて,SOTAのポーズ推定性能とより優れた一般化を実現する。
論文 参考訳(メタデータ) (2022-10-03T17:51:54Z) - Object Structural Points Representation for Graph-based Semantic
Monocular Localization and Mapping [9.61301182502447]
本稿では,単一分子意味論的SLAMシステムにおいて,対象の幾何学をランドマークとして用いるための,構造点に基づく効率的な表現法を提案する。
特に、ポーズグラフ内のランドマークノードに対して、オブジェクトの位置、向き、サイズ/スケールを格納する逆深さパラメトリゼーションを提案する。
論文 参考訳(メタデータ) (2022-06-21T11:32:55Z) - Continuous Surface Embeddings [76.86259029442624]
我々は、変形可能な対象カテゴリーにおける密接な対応を学習し、表現するタスクに焦点をあてる。
本稿では,高密度対応の新たな学習可能な画像ベース表現を提案する。
提案手法は,人間の身近なポーズ推定のための最先端手法と同等以上の性能を示すことを示す。
論文 参考訳(メタデータ) (2020-11-24T22:52:15Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
本稿では、勾配に基づくフィッティング法とパラメトリックニューラルネットワーク合成モジュールを組み合わせる。
画像合成ネットワークは、ポーズ設定空間を効率的に分散するように設計されている。
本研究では,2次元画像のみから高精度に物体の向きを復元できることを実験的に示す。
論文 参考訳(メタデータ) (2020-08-18T20:30:47Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
既存のセグメンテーションアプローチは、グローバルコンテキストをモデル化することでオブジェクトの内部の一貫性を改善すること、あるいはマルチスケールの特徴融合によって境界に沿ったオブジェクトの詳細を洗練することを目的としている。
本稿では,セマンティックセグメンテーションのための新しいパラダイムを提案する。
我々の洞察は、セマンティックセグメンテーションの魅力ある性能には、画像の高頻度と低頻度に対応するオブジェクトのテキストボディとテキストエッジを具体的にモデル化する必要があるということである。
さまざまなベースラインやバックボーンネットワークを備えた提案したフレームワークが,オブジェクト内部の一貫性とオブジェクト境界を向上させることを示す。
論文 参考訳(メタデータ) (2020-07-20T12:11:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。