論文の概要: Loop Closure Detection Based on Object-level Spatial Layout and Semantic
Consistency
- arxiv url: http://arxiv.org/abs/2304.05146v2
- Date: Fri, 14 Apr 2023 08:29:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 15:47:31.316006
- Title: Loop Closure Detection Based on Object-level Spatial Layout and Semantic
Consistency
- Title(参考訳): オブジェクトレベルの空間レイアウトとセマンティック一貫性に基づくループクロージャ検出
- Authors: Xingwu Ji, Peilin Liu, Haochen Niu, Xiang Chen, Rendong Ying, Fei Wen
- Abstract要約: 本稿では3次元シーングラフの空間的レイアウトとセマンティック一貫性に基づくオブジェクトベースのループ閉包検出手法を提案する。
実験により,提案手法によりより正確な3次元意味マップを構築可能であることが示された。
- 参考スコア(独自算出の注目度): 14.694754836704819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual simultaneous localization and mapping (SLAM) systems face challenges
in detecting loop closure under the circumstance of large viewpoint changes. In
this paper, we present an object-based loop closure detection method based on
the spatial layout and semanic consistency of the 3D scene graph. Firstly, we
propose an object-level data association approach based on the semantic
information from semantic labels, intersection over union (IoU), object color,
and object embedding. Subsequently, multi-view bundle adjustment with the
associated objects is utilized to jointly optimize the poses of objects and
cameras. We represent the refined objects as a 3D spatial graph with semantics
and topology. Then, we propose a graph matching approach to select
correspondence objects based on the structure layout and semantic property
similarity of vertices' neighbors. Finally, we jointly optimize camera
trajectories and object poses in an object-level pose graph optimization, which
results in a globally consistent map. Experimental results demonstrate that our
proposed data association approach can construct more accurate 3D semantic
maps, and our loop closure method is more robust than point-based and
object-based methods in circumstances with large viewpoint changes.
- Abstract(参考訳): 視覚的同時ローカライゼーションとマッピング(SLAM)システムは、大きな視点変化の状況下でループ閉鎖を検出する上で課題に直面している。
本稿では3次元シーングラフの空間的レイアウトとセマンティック一貫性に基づくオブジェクトベースのループ閉鎖検出手法を提案する。
まず,semantic labels,intersection over union (iou),object color,object embeddedからのセマンティック情報に基づくオブジェクトレベルのデータアソシエーション手法を提案する。
その後、関連するオブジェクトとのマルチビューバンドル調整を利用して、オブジェクトとカメラのポーズを共同で最適化する。
改良されたオブジェクトを意味論とトポロジーを備えた3次元空間グラフとして表現する。
次に,頂点近傍の構造レイアウトと意味的性質の類似性に基づいて対応オブジェクトを選択するグラフマッチング手法を提案する。
最後に、オブジェクトレベルのポーズグラフ最適化において、カメラトラジェクトリとオブジェクトのポーズを共同で最適化する。
実験により,提案手法によりより正確な3次元セマンティックマップを構築でき,大きな視点変化のある状況下では,ループクロージャ法はポイントベース法やオブジェクトベース法よりも堅牢であることが示された。
関連論文リスト
- Open-Vocabulary Octree-Graph for 3D Scene Understanding [54.11828083068082]
Octree-Graphはオープンな3Dシーン理解のための新しいシーン表現である。
セマンティクスを記憶し、その形状に応じてオブジェクトの占有度を調節するアダプティブ・オクツリー構造を開発する。
論文 参考訳(メタデータ) (2024-11-25T10:14:10Z) - Multiview Scene Graph [7.460438046915524]
適切なシーン表現は、空間知性の追求の中心である。
未提示画像からマルチビューシーングラフ(MSG)を構築することを提案する。
MSGは、場所とオブジェクトノードを相互接続したシーンをトポロジ的に表現する。
論文 参考訳(メタデータ) (2024-10-15T02:04:05Z) - GOReloc: Graph-based Object-Level Relocalization for Visual SLAM [17.608119427712236]
本稿では,ロボットシステムのオブジェクトレベル再ローカライズのための新しい手法を紹介する。
軽量なオブジェクトレベルマップにおいて、現在のフレーム内の物体検出と3Dオブジェクトとの密接な関連付けにより、カメラセンサのポーズを決定する。
論文 参考訳(メタデータ) (2024-08-15T03:54:33Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - SemanticTopoLoop: Semantic Loop Closure With 3D Topological Graph Based
on Quadric-Level Object Map [0.8158530638728501]
ループクロージャはSLAMの重要なコンポーネントの1つです。
バッグ・オブ・ワード(英語版)モデルのような伝統的な外見に基づく手法は、しばしば局所的な2D特徴とトレーニングデータの量によって制限される。
論文 参考訳(メタデータ) (2023-11-06T02:30:30Z) - An Object SLAM Framework for Association, Mapping, and High-Level Tasks [12.62957558651032]
本稿では,オブジェクト指向認識とオブジェクト指向ロボットタスクに焦点を当てた包括的オブジェクトSLAMフレームワークを提案する。
提案したオブジェクトSLAMフレームワークを効率よく評価するために,さまざまな公開データセットと実世界の結果が使用されている。
論文 参考訳(メタデータ) (2023-05-12T08:10:14Z) - 3D Video Object Detection with Learnable Object-Centric Global
Optimization [65.68977894460222]
対応性に基づく最適化は3次元シーン再構成の基盤となるが、3次元ビデオオブジェクト検出では研究されていない。
オブジェクト中心の時間対応学習と特徴量付きオブジェクトバンドル調整を備えた、エンドツーエンドで最適化可能なオブジェクト検出器であるBA-Detを提案する。
論文 参考訳(メタデータ) (2023-03-27T17:39:39Z) - Explicit3D: Graph Network with Spatial Inference for Single Image 3D
Object Detection [35.85544715234846]
本稿では,オブジェクトの幾何学的特徴と意味論的特徴に基づいて,Explicit3Dという動的スパースグラフパイプラインを提案する。
SUN RGB-Dデータセットによる実験結果から,我々のExplicit3Dは最先端技術よりも優れた性能バランスを実現することが示された。
論文 参考訳(メタデータ) (2023-02-13T16:19:54Z) - Fusing Local Similarities for Retrieval-based 3D Orientation Estimation
of Unseen Objects [70.49392581592089]
我々は,モノクロ画像から未確認物体の3次元配向を推定する作業に取り組む。
我々は検索ベースの戦略に従い、ネットワークがオブジェクト固有の特徴を学習するのを防ぐ。
また,LineMOD,LineMOD-Occluded,T-LESSのデータセットを用いた実験により,本手法が従来の手法よりもはるかに優れた一般化をもたらすことが示された。
論文 参考訳(メタデータ) (2022-03-16T08:53:00Z) - Objects are Different: Flexible Monocular 3D Object Detection [87.82253067302561]
そこで本研究では,乱れたオブジェクトを明示的に分離し,オブジェクト深度推定のための複数のアプローチを適応的に組み合わせたモノクル3次元オブジェクト検出のためのフレキシブルなフレームワークを提案する。
実験の結果,本手法はkittiベンチマークテストセットにおいて,中等度レベルが27%,硬度が30%と,最先端法を27%上回った。
論文 参考訳(メタデータ) (2021-04-06T07:01:28Z) - Object-Centric Multi-View Aggregation [86.94544275235454]
本稿では,オブジェクトのスパースなビュー集合を集約して,半単純3次元表現を容積特徴格子の形で計算する手法を提案する。
我々のアプローチの鍵となるのは、カメラのポーズを明示することなく、ビューを持ち上げることができるオブジェクト中心の標準3D座標システムである。
画素から標準座標系への対称対応マッピングの計算により、未知の領域への情報伝達がより良くなることを示す。
論文 参考訳(メタデータ) (2020-07-20T17:38:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。