Transformer-based Map Matching Model with Limited Ground-Truth Data
using Transfer-Learning Approach
- URL: http://arxiv.org/abs/2108.00439v2
- Date: Tue, 3 Aug 2021 01:06:50 GMT
- Title: Transformer-based Map Matching Model with Limited Ground-Truth Data
using Transfer-Learning Approach
- Authors: Zhixiong Jin, Seongjin Choi, Hwasoo Yeo
- Abstract summary: In many trajectory-based applications, it is necessary to map raw GPS trajectories onto road networks in digital maps.
In this paper, we consider the map-matching task from the data perspective, proposing a deep learning-based map-matching model.
We generate synthetic trajectory data to pre-train the Transformer model and then fine-tune the model with a limited number of ground-truth data.
- Score: 6.510061176722248
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In many trajectory-based applications, it is necessary to map raw GPS
trajectories onto road networks in digital maps, which is commonly referred to
as a map-matching process. While most previous map-matching methods have
focused on using rule-based algorithms to deal with the map-matching problems,
in this paper, we consider the map-matching task from the data perspective,
proposing a deep learning-based map-matching model. We build a
Transformer-based map-matching model with a transfer learning approach. We
generate synthetic trajectory data to pre-train the Transformer model and then
fine-tune the model with a limited number of ground-truth data to minimize the
model development cost and reduce the real-to-virtual gap. Three metrics
(Average Hamming Distance, F-score, and BLEU) at two levels (point and segment
level) are used to evaluate the model performance. The results indicate that
the proposed model outperforms existing models. Furthermore, we use the
attention weights of the Transformer to plot the map-matching process and find
how the model matches the road segments correctly.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Surrogate Modeling of Trajectory Map-matching in Urban Road Networks using Transformer Sequence-to-Sequence Model [1.3812010983144802]
This paper introduces a deep-learning model, specifically the transformer-based encoder-decoder model, to perform as a surrogate for offline map-matching algorithms.
The model is trained and evaluated using GPS traces collected in Manhattan, New York.
arXiv Detail & Related papers (2024-04-18T18:39:23Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
We release a dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources.
Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented.
arXiv Detail & Related papers (2024-01-12T14:56:45Z) - Transformer-Based Neural Surrogate for Link-Level Path Loss Prediction
from Variable-Sized Maps [11.327456466796681]
Estimating path loss for a transmitter-receiver location is key to many use-cases including network planning and handover.
We present a transformer-based neural network architecture that enables predicting link-level properties from maps of various dimensions and from sparse measurements.
arXiv Detail & Related papers (2023-10-06T20:17:40Z) - Neural Semantic Surface Maps [52.61017226479506]
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another.
Our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement.
arXiv Detail & Related papers (2023-09-09T16:21:56Z) - Semi-supervised Learning of Pushforwards For Domain Translation &
Adaptation [3.800498098285222]
Given two probability densities on related data spaces, we seek a map pushing one density to the other.
For maps to have utility in a broad application space, the map must be available to apply on out-of-sample data points.
We introduce a novel pushforward map learning algorithm that utilizes normalizing flows to parameterize the map.
arXiv Detail & Related papers (2023-04-18T00:35:32Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z) - Asynchronously Trained Distributed Topographic Maps [0.0]
We present an algorithm that uses $N$ autonomous units to generate a feature map by distributed training.
Unit autonomy is achieved by sparse interaction in time & space through the combination of a distributed search, and a cascade-driven weight updating scheme.
arXiv Detail & Related papers (2023-01-20T01:15:56Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances [55.64521598173897]
This paper tries to train a small-scale model, which could be repetitively used to build heat maps for the traveling salesman problem (TSP)
Heat maps are fed into a reinforcement learning approach (Monte Carlo tree search) to guide the search of high-quality solutions.
Experimental results show that, this new approach clearly outperforms the existing machine learning based TSP algorithms.
arXiv Detail & Related papers (2020-12-19T11:06:30Z) - Automatic extraction of road intersection points from USGS historical
map series using deep convolutional neural networks [0.0]
Road intersections data have been used across different geospatial applications and analysis.
We employed the standard paradigm of using deep convolutional neural network for object detection task named region-based CNN.
Also, compared to the majority of traditional computer vision algorithms RCNN provides more accurate extraction.
arXiv Detail & Related papers (2020-07-14T23:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.