CERL: A Unified Optimization Framework for Light Enhancement with
Realistic Noise
- URL: http://arxiv.org/abs/2108.00478v1
- Date: Sun, 1 Aug 2021 15:31:15 GMT
- Title: CERL: A Unified Optimization Framework for Light Enhancement with
Realistic Noise
- Authors: Zeyuan Chen, Yifan Jiang, Dong Liu, Zhangyang Wang
- Abstract summary: Low-light images captured in the real world are inevitably corrupted by sensor noise.
Existing light enhancement methods either overlook the important impact of real-world noise during enhancement, or treat noise removal as a separate pre- or post-processing step.
We present Coordinated Enhancement for Real-world Low-light Noisy Images (CERL), that seamlessly integrates light enhancement and noise suppression parts into a unified and physics-grounded framework.
- Score: 81.47026986488638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-light images captured in the real world are inevitably corrupted by
sensor noise. Such noise is spatially variant and highly dependent on the
underlying pixel intensity, deviating from the oversimplified assumptions in
conventional denoising. Existing light enhancement methods either overlook the
important impact of real-world noise during enhancement, or treat noise removal
as a separate pre- or post-processing step. We present Coordinated Enhancement
for Real-world Low-light Noisy Images (CERL), that seamlessly integrates light
enhancement and noise suppression parts into a unified and physics-grounded
optimization framework. For the real low-light noise removal part, we customize
a self-supervised denoising model that can easily be adapted without referring
to clean ground-truth images. For the light enhancement part, we also improve
the design of a state-of-the-art backbone. The two parts are then joint
formulated into one principled plug-and-play optimization. Our approach is
compared against state-of-the-art low-light enhancement methods both
qualitatively and quantitatively. Besides standard benchmarks, we further
collect and test on a new realistic low-light mobile photography dataset
(RLMP), whose mobile-captured photos display heavier realistic noise than those
taken by high-quality cameras. CERL consistently produces the most visually
pleasing and artifact-free results across all experiments. Our RLMP dataset and
codes are available at: https://github.com/VITA-Group/CERL.
Related papers
- Unsupervised Low-light Image Enhancement with Lookup Tables and Diffusion Priors [38.96909959677438]
Low-light image enhancement (LIE) aims at precisely and efficiently recovering an image degraded in poor illumination environments.
Recent advanced LIE techniques are using deep neural networks, which require lots of low-normal light image pairs, network parameters, and computational resources.
We devise a novel unsupervised LIE framework based on diffusion priors and lookup tables to achieve efficient low-light image recovery.
arXiv Detail & Related papers (2024-09-27T16:37:27Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
We propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images.
Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules.
We observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance.
arXiv Detail & Related papers (2023-12-02T04:31:51Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Seeing Through The Noisy Dark: Toward Real-world Low-Light Image
Enhancement and Denoising [125.56062454927755]
Real-world low-light environment usually suffer from lower visibility and heavier noise, due to insufficient light or hardware limitation.
We propose a novel end-to-end method termed Real-world Low-light Enhancement & Denoising Network (RLED-Net)
arXiv Detail & Related papers (2022-10-02T14:57:23Z) - Adaptive Unfolding Total Variation Network for Low-Light Image
Enhancement [6.531546527140475]
Most existing enhancing algorithms in sRGB space only focus on the low visibility problem or suppress the noise under a hypothetical noise level.
We propose an adaptive unfolding total variation network (UTVNet) to approximate the noise level from the real sRGB low-light image.
Experiments on real-world low-light images clearly demonstrate the superior performance of UTVNet over state-of-the-art methods.
arXiv Detail & Related papers (2021-10-03T11:22:17Z) - Progressive Joint Low-light Enhancement and Noise Removal for Raw Images [10.778200442212334]
Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture.
We propose a low-light image processing framework that performs joint illumination adjustment, color enhancement, and denoising.
Our framework does not need to recollect massive data when being adapted to another camera model.
arXiv Detail & Related papers (2021-06-28T16:43:52Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.