Progressive Joint Low-light Enhancement and Noise Removal for Raw Images
- URL: http://arxiv.org/abs/2106.14844v2
- Date: Tue, 29 Jun 2021 06:47:48 GMT
- Title: Progressive Joint Low-light Enhancement and Noise Removal for Raw Images
- Authors: Yucheng Lu and Seung-Won Jung
- Abstract summary: Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture.
We propose a low-light image processing framework that performs joint illumination adjustment, color enhancement, and denoising.
Our framework does not need to recollect massive data when being adapted to another camera model.
- Score: 10.778200442212334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-light imaging on mobile devices is typically challenging due to
insufficient incident light coming through the relatively small aperture,
resulting in a low signal-to-noise ratio. Most of the previous works on
low-light image processing focus either only on a single task such as
illumination adjustment, color enhancement, or noise removal; or on a joint
illumination adjustment and denoising task that heavily relies on short-long
exposure image pairs collected from specific camera models, and thus these
approaches are less practical and generalizable in real-world settings where
camera-specific joint enhancement and restoration is required. To tackle this
problem, in this paper, we propose a low-light image processing framework that
performs joint illumination adjustment, color enhancement, and denoising.
Considering the difficulty in model-specific data collection and the ultra-high
definition of the captured images, we design two branches: a coefficient
estimation branch as well as a joint enhancement and denoising branch. The
coefficient estimation branch works in a low-resolution space and predicts the
coefficients for enhancement via bilateral learning, whereas the joint
enhancement and denoising branch works in a full-resolution space and performs
joint enhancement and denoising in a progressive manner. In contrast to
existing methods, our framework does not need to recollect massive data when
being adapted to another camera model, which significantly reduces the efforts
required to fine-tune our approach for practical usage. Through extensive
experiments, we demonstrate its great potential in real-world low-light imaging
applications when compared with current state-of-the-art methods.
Related papers
- DARK: Denoising, Amplification, Restoration Kit [0.7670170505111058]
This paper introduces a novel lightweight computational framework for enhancing images under low-light conditions.
Our model is designed to be lightweight, ensuring low computational demand and suitability for real-time applications on standard consumer hardware.
arXiv Detail & Related papers (2024-05-21T16:01:13Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
We propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images.
Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules.
We observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance.
arXiv Detail & Related papers (2023-12-02T04:31:51Z) - Zero-Shot Enhancement of Low-Light Image Based on Retinex Decomposition [4.175396687130961]
We propose a new learning-based Retinex decomposition of zero-shot low-light enhancement method, called ZERRINNet.
Our method is a zero-reference enhancement method that is not affected by the training data of paired and unpaired datasets.
arXiv Detail & Related papers (2023-11-06T09:57:48Z) - Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming [0.728258471592763]
Enhancing low-light images while maintaining natural colors is a challenging problem due to camera processing variations.
We propose Dimma, a semi-supervised approach that aligns with any camera by utilizing a small set of image pairs.
We achieve that by introducing a convolutional mixture density network that generates distorted colors of the scene based on the illumination differences.
arXiv Detail & Related papers (2023-10-14T17:59:46Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Cycle-Interactive Generative Adversarial Network for Robust Unsupervised
Low-Light Enhancement [109.335317310485]
Cycle-Interactive Generative Adversarial Network (CIGAN) is capable of not only better transferring illumination distributions between low/normal-light images but also manipulating detailed signals.
In particular, the proposed low-light guided transformation feed-forwards the features of low-light images from the generator of enhancement GAN into the generator of degradation GAN.
arXiv Detail & Related papers (2022-07-03T06:37:46Z) - CERL: A Unified Optimization Framework for Light Enhancement with
Realistic Noise [81.47026986488638]
Low-light images captured in the real world are inevitably corrupted by sensor noise.
Existing light enhancement methods either overlook the important impact of real-world noise during enhancement, or treat noise removal as a separate pre- or post-processing step.
We present Coordinated Enhancement for Real-world Low-light Noisy Images (CERL), that seamlessly integrates light enhancement and noise suppression parts into a unified and physics-grounded framework.
arXiv Detail & Related papers (2021-08-01T15:31:15Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.