Characterization of the lowest excited-state ro-vibrational level of
$^{23}$Na$^{87}$Rb
- URL: http://arxiv.org/abs/2108.00624v1
- Date: Mon, 2 Aug 2021 04:28:53 GMT
- Title: Characterization of the lowest excited-state ro-vibrational level of
$^{23}$Na$^{87}$Rb
- Authors: Junyu He, Junyu Lin, Romain Vexiau, Nadia Bouloufa, Olivier Dulieu and
Dajun Wang
- Abstract summary: We investigate the lowest ro-vibrational level of the $b3Pi$ state with high resolution laser spectroscopy.
This electronic spin-forbidden $X1Sigma+ leftrightarrow b3Pi$ transition features a nearly diagonal Franck-Condon factor.
- Score: 2.0575351445652057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Starting from an ultracold sample of ground-state $^{23}$Na$^{87}$Rb
molecules, we investigate the lowest ro-vibrational level of the $b^3\Pi$ state
with high resolution laser spectroscopy. This electronic spin-forbidden
$X^1\Sigma^+ \leftrightarrow b^3\Pi$ transition features a nearly diagonal
Franck-Condon factor and has been proposed useful for probing and manipulating
the ultracold molecular gas. We measure the transition strength directly by
probing the ac Stark shift induced by near resonance light and determine the
total excited-state spontaneous emission rate by observing the loss of
molecules. From the extracted branching ratio and the theoretical modeling, we
find that the leakage to the continuum of the $a^3\Sigma^+$ state plays the
dominant role in the total transition linewidth. Based on these results, we
show that it is feasible to create optical trapping potentials for maximizing
the rotational coherence with laser light tuned to near this transition.
Related papers
- Spectroscopic characterization of the a$^3\Pi$ state of aluminum
monofluoride [0.9485862597874625]
All $Q$ lines of the strong A$1Pi$ $leftarrow$ X$1Sigma+$ transition around 227nm are rotationally closed.
The same holds for the narrow, spin-forbidden a$3Pi$ $leftarrow$ X$1Sigma+$ transition around 367 nm.
arXiv Detail & Related papers (2021-12-17T13:09:37Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Control of reactive collisions by quantum interference [0.0]
In this study, we achieved magnetic control of reactive scattering in an ultracold mixture of $23$Na atoms and $23$Na$6$Li molecules.
By controlling the phase of the scattering wave function via a Feshbach resonance, we modified the loss rate by more than a factor of $100$, from far below to far above the universal limit.
arXiv Detail & Related papers (2021-09-08T21:37:14Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - Ultracold $^{88}\rm{Sr}_2$ molecules in the absolute ground state [0.0]
We report efficient all-optical creation of an ultracold gas of alkaline-earth-metal dimers in their absolute ground state.
Our results pave the way for the use of alkaline-earth-metal dimers for high-precision spectroscopy.
arXiv Detail & Related papers (2021-08-12T23:33:17Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Magic Conditions for Multiple Rotational States of Bialkali Molecules in
Optical Lattices [0.0]
We investigate magic-wavelength trapping of ultracold bialkali molecules in the vicinity of weak optical transitions.
We show that a frequency window exists between two nearest neighbor vibrational poles in the dynamic polarizability.
We derive a set of analytical criteria that must be fulfilled to ensure the existence of such magic frequency windows.
arXiv Detail & Related papers (2021-01-28T21:46:19Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Ab initio properties of the NaLi molecule in the $a^3\Sigma^+$
electronic state [0.0]
We calculate the electronic and rovibrational structure of ultracold polar and magnetic molecules with spectroscopic accuracy.
We show that quantum chemistry methods are capable of predicting scattering properties of manyelectron systems.
arXiv Detail & Related papers (2020-03-26T17:39:46Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.