Ultracold $^{88}\rm{Sr}_2$ molecules in the absolute ground state
- URL: http://arxiv.org/abs/2108.05996v1
- Date: Thu, 12 Aug 2021 23:33:17 GMT
- Title: Ultracold $^{88}\rm{Sr}_2$ molecules in the absolute ground state
- Authors: K. H. Leung, E. Tiberi, B. Iritani, I. Majewska, R. Moszynski, T.
Zelevinsky
- Abstract summary: We report efficient all-optical creation of an ultracold gas of alkaline-earth-metal dimers in their absolute ground state.
Our results pave the way for the use of alkaline-earth-metal dimers for high-precision spectroscopy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We report efficient all-optical creation of an ultracold gas of
alkaline-earth-metal dimers, $^{88}\rm{Sr}_2$, in their absolute ground state.
Starting with weakly bound singlet molecules formed by narrow-line
photoassociation in an optical lattice, followed by stimulated Raman adiabatic
passage (STIRAP) via a singlet-dominant channel in the $(1)0_u^+$ excited
potential, we prepare pure samples of more than 5500 molecules in
$X^1\Sigma_g^+(v=0,J=0)$. We observe two-body collisional loss rates close to
the universal limit for both the least bound and most bound vibrational states
in $X^1\Sigma_g^+$. We demonstrate the enhancement of STIRAP efficiency in a
magic-wavelength optical lattice where thermal decoherence is eliminated. Our
results pave the way for the use of alkaline-earth-metal dimers for
high-precision spectroscopy, and indicate favorable prospects for robust
quantum state preparation of ultracold molecules involving closed-shell atoms,
as well as molecule assembly in deep optical traps tuned to a magic wavelength.
Related papers
- State-Insensitive Trapping of Alkaline-Earth Atoms in a Nanofiber-Based
Optical Dipole Trap [0.0]
We demonstrate a state-insensitive optical dipole trap for strontium-88, an alkaline-earth atom, using the evanescent fields of a nanotapered optical fiber.
This work also lays the foundation for developing versatile and robust matter-wave atomtronic circuits over nanophotonic waveguides.
arXiv Detail & Related papers (2022-11-08T04:54:50Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Rapid generation of all-optical $^{39}$K Bose-Einstein condensates using
a low-field Feshbach resonance [58.720142291102135]
We investigate the production of all-optical $39$K Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near $33$ G.
We are able to produce fully condensed ensembles with $5.8times104$ atoms within $850$ ms evaporation time at a scattering length of $232.
Based on our findings we describe routes towards high-flux sources of ultra-cold potassium for inertial sensing.
arXiv Detail & Related papers (2022-01-12T16:39:32Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - HF, DF, TF: Approximating potential curves, calculating rovibrational
states [0.0]
An analytical representation for the potential energy curve for the ground state $X1Sigma+$ of the hydrogen fluoride molecule (HF) is presented.
The rovibrational spectra of the diatomic molecule HF is calculated by solving the Schr"odinger equation for nuclear motion.
arXiv Detail & Related papers (2021-10-01T23:52:00Z) - Laser-assisted binding of ultracold polar molecules with Rydberg atoms
in the van der Waals regime [0.0]
We study ultracold long-range collisions of alkali-metal dimers with a reservoir gas of alkalimetal Rydberg atoms in a two-photon laser excitation scheme.
We show that the two-photon photoassociation (PA) of the atom-molecule pair into a long-range bound trimer state is efficient over a broad range of atomic Rydberg channels.
arXiv Detail & Related papers (2021-09-14T02:56:57Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - Characterization of the lowest excited-state ro-vibrational level of
$^{23}$Na$^{87}$Rb [2.0575351445652057]
We investigate the lowest ro-vibrational level of the $b3Pi$ state with high resolution laser spectroscopy.
This electronic spin-forbidden $X1Sigma+ leftrightarrow b3Pi$ transition features a nearly diagonal Franck-Condon factor.
arXiv Detail & Related papers (2021-08-02T04:28:53Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.