Nonparametric posterior learning for emission tomography with multimodal
data
- URL: http://arxiv.org/abs/2108.00866v1
- Date: Thu, 29 Jul 2021 12:43:02 GMT
- Title: Nonparametric posterior learning for emission tomography with multimodal
data
- Authors: Fedor Goncharov, \'Eric Barat, Thomas Dautremer
- Abstract summary: We adapt the recently proposed nonparametric posterior learning technique to the context of Poisson-type data in emission tomography.
We derive sampling algorithms which are trivially parallelizable, scalable and very easy to implement.
We show theoretically and numerically that such data augmentation significantly increases mixing times for the Markov chain.
- Score: 1.6500749121196991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we continue studies of the uncertainty quantification problem in
emission tomographies such as PET or SPECT. In particular, we consider a
scenario when additional multimodal data (e.g., anatomical MRI images) are
available. To solve the aforementioned problem we adapt the recently proposed
nonparametric posterior learning technique to the context of Poisson-type data
in emission tomography. Using this approach we derive sampling algorithms which
are trivially parallelizable, scalable and very easy to implement. In addition,
we prove conditional consistency and tightness for the distribution of produced
samples in the small noise limit (i.e., when the acquisition time tends to
infinity) and derive new geometrical and necessary condition on how MRI images
must be used. This condition arises naturally in the context of misspecified
generalized Poisson models. We also contrast our approach with bayesian MCMC
sampling based a data augmentation scheme which is very popular in the context
of EM-type algorithms for PET or SPECT. We show theoretically and also
numerically that such data augmentation significantly increases mixing times
for the Markov chain. In view of this, our algorithms seem to give a reasonable
trade-off between design complexity, scalability, numerical load and asessement
for the uncertainty quantification.
Related papers
- MRI Parameter Mapping via Gaussian Mixture VAE: Breaking the Assumption of Independent Pixels [3.720246718519987]
We introduce and demonstrate a new paradigm for quantitative parameter mapping in MRI.
We propose a self-supervised deep variational approach that breaks the assumption of independent pixels.
Our approach can hence support the clinical adoption of parameter mapping methods such as dMRI and qMRI.
arXiv Detail & Related papers (2024-11-16T11:11:36Z) - QN-Mixer: A Quasi-Newton MLP-Mixer Model for Sparse-View CT Reconstruction [0.0]
We introduce QN-Mixer, an algorithm based on the quasi-Newton approach.
Incept-Mixer is an efficient neural architecture that serves as a non-local regularization term.
Our approach intelligently downsamples information, significantly reducing computational requirements.
arXiv Detail & Related papers (2024-02-28T00:20:25Z) - Posterior Estimation for Dynamic PET imaging using Conditional
Variational Inference [10.206699988915183]
We propose a deep-learning-based framework for efficient posterior estimation.
Specifically, we counteract the information loss in the forward process by introducing latent variables.
arXiv Detail & Related papers (2023-10-24T14:05:30Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Amortized Bayesian Inference of GISAXS Data with Normalizing Flows [0.10752246796855561]
We propose a simulation-based framework that combines variational auto-encoders and normalizing flows to estimate the posterior distribution of object parameters.
We demonstrate that our method reduces the inference cost by orders of magnitude while producing consistent results with ABC.
arXiv Detail & Related papers (2022-10-04T12:09:57Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.