LIMDD: A Decision Diagram for Simulation of Quantum Computing Including
Stabilizer States
- URL: http://arxiv.org/abs/2108.00931v5
- Date: Wed, 6 Sep 2023 15:14:28 GMT
- Title: LIMDD: A Decision Diagram for Simulation of Quantum Computing Including
Stabilizer States
- Authors: Lieuwe Vinkhuijzen, Tim Coopmans, David Elkouss, Vedran Dunjko, Alfons
Laarman
- Abstract summary: We introduce a more powerful decision diagram variant, called Local Invertible Map-DD (LIMDD)
We prove that the set of quantum states represented by poly-sized LIMDDs strictly contains the union of stabilizer states and other decision diagram variants.
LIMDDs thus pave the way for fundamentally more powerful solutions for simulation and analysis of quantum computing.
- Score: 1.1999555634662633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient methods for the representation and simulation of quantum states and
quantum operations are crucial for the optimization of quantum circuits.
Decision diagrams (DDs), a well-studied data structure originally used to
represent Boolean functions, have proven capable of capturing relevant aspects
of quantum systems, but their limits are not well understood. In this work, we
investigate and bridge the gap between existing DD-based structures and the
stabilizer formalism, an important tool for simulating quantum circuits in the
tractable regime. We first show that although DDs were suggested to succinctly
represent important quantum states, they actually require exponential space for
certain stabilizer states. To remedy this, we introduce a more powerful
decision diagram variant, called Local Invertible Map-DD (LIMDD). We prove that
the set of quantum states represented by poly-sized LIMDDs strictly contains
the union of stabilizer states and other decision diagram variants. Finally,
there exist circuits which LIMDDs can efficiently simulate, while their output
states cannot be succinctly represented by two state-of-the-art simulation
paradigms: the stabilizer decomposition techniques for Clifford + $T$ circuits
and Matrix-Product States. By uniting two successful approaches, LIMDDs thus
pave the way for fundamentally more powerful solutions for simulation and
analysis of quantum computing.
Related papers
- Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Stabilizer ground states for simulating quantum many-body physics: theory, algorithms, and applications [0.5735035463793009]
We apply stabilizer states to tackle quantum many-body ground state problems.
We develop an exact and linear-scaled algorithm to obtain stabilizer ground states of 1D local Hamiltonians.
arXiv Detail & Related papers (2024-03-13T11:54:25Z) - Simulating Quantum Circuits by Model Counting [0.0]
We show for the first time that a strong simulation of universal quantum circuits can be efficiently tackled through weighted model counting.
Our work paves the way to apply the existing array of powerful classical reasoning tools to realize efficient quantum circuit compilation.
arXiv Detail & Related papers (2024-03-11T22:40:15Z) - Sufficient condition for universal quantum computation using bosonic
circuits [44.99833362998488]
We focus on promoting circuits that are otherwise simulatable to computational universality.
We first introduce a general framework for mapping a continuous-variable state into a qubit state.
We then cast existing maps into this framework, including the modular and stabilizer subsystem decompositions.
arXiv Detail & Related papers (2023-09-14T16:15:14Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Iterative Qubit Coupled Cluster using only Clifford circuits [36.136619420474766]
An ideal state preparation protocol can be characterized by being easily generated classically.
We propose a method that meets these requirements by introducing a variant of the iterative qubit coupled cluster (iQCC)
We demonstrate the algorithm's correctness in ground-state simulations and extend our study to complex systems like the titanium-based compound Ti(C5H5)(CH3)3 with a (20, 20) active space.
arXiv Detail & Related papers (2022-11-18T20:31:10Z) - Preparing Valence-Bond-Solid states on noisy intermediate-scale quantum
computers [0.5608803995383594]
We propose methods to initialize on a gate-based quantum computer a general class of quantum spin wave functions.
VBS states are the exact ground states of a class of interacting quantum spin models introduced by Affleck, Kennedy, Lieb and Tasaki.
We find that schemes to prepare VBS states based on their tensor-network representations yield quantum circuits that are too deep to be within reach of noisy intermediate-scale quantum computers.
arXiv Detail & Related papers (2022-07-15T19:40:15Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - As Accurate as Needed, as Efficient as Possible: Approximations in
DD-based Quantum Circuit Simulation [5.119310422637946]
Decision Diagrams (DDs) have previously shown to reduce the required memory in many important cases by exploiting redundancies in the quantum state.
We show that this reduction can be amplified by exploiting the probabilistic nature of quantum computers to achieve even more compact representations.
Specifically, we propose two new DD-based simulation strategies that approximate the quantum states to attain more compact representations.
arXiv Detail & Related papers (2020-12-10T12:02:03Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.