Stabilizer ground states for simulating quantum many-body physics: theory, algorithms, and applications
- URL: http://arxiv.org/abs/2403.08441v3
- Date: Mon, 30 Sep 2024 03:19:55 GMT
- Title: Stabilizer ground states for simulating quantum many-body physics: theory, algorithms, and applications
- Authors: Jiace Sun, Lixue Cheng, Shi-Xin Zhang,
- Abstract summary: We apply stabilizer states to tackle quantum many-body ground state problems.
We develop an exact and linear-scaled algorithm to obtain stabilizer ground states of 1D local Hamiltonians.
- Score: 0.5735035463793009
- License:
- Abstract: Stabilizer states, which are also known as the Clifford states, have been commonly utilized in quantum information, quantum error correction, and quantum circuit simulation due to their simple mathematical structure. In this work, we apply stabilizer states to tackle quantum many-body ground state problems and introduce the concept of stabilizer ground states. We establish an equivalence formalism for identifying stabilizer ground states of general Pauli Hamiltonians. Moreover, we develop an exact and linear-scaled algorithm to obtain stabilizer ground states of 1D local Hamiltonians and thus free from discrete optimization. This proposed equivalence formalism and linear-scaled algorithm are not only applicable to finite-size systems, but also adaptable to infinite periodic systems. The scalability and efficiency of the algorithms are numerically benchmarked on different Hamiltonians. Finally, we demonstrate that stabilizer ground states are promising tools for not only qualitative understanding of quantum systems, but also cornerstones of more advanced classical or quantum algorithms.
Related papers
- Doped stabilizer states in many-body physics and where to find them [0.0]
This work uncovers a fundamental connection between doped stabilizer states and the structure of eigenstates in many-body quantum systems.
We develop efficient classical algorithms for tasks such as finding low-energy eigenstates, simulating quench dynamics, and computing entanglement entropies in these systems.
arXiv Detail & Related papers (2024-03-22T02:21:48Z) - Bases for optimising stabiliser decompositions of quantum states [14.947570152519281]
We introduce and study the vector space of linear dependencies of $n$-qubit stabiliser states.
We construct elegant bases of linear dependencies of constant size three.
We use them to explicitly compute the stabiliser extent of states of more qubits than is feasible with existing techniques.
arXiv Detail & Related papers (2023-11-29T06:30:05Z) - Sufficient condition for universal quantum computation using bosonic
circuits [44.99833362998488]
We focus on promoting circuits that are otherwise simulatable to computational universality.
We first introduce a general framework for mapping a continuous-variable state into a qubit state.
We then cast existing maps into this framework, including the modular and stabilizer subsystem decompositions.
arXiv Detail & Related papers (2023-09-14T16:15:14Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian system.
Our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.
arXiv Detail & Related papers (2022-10-16T05:57:43Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Scalable measures of magic resource for quantum computers [0.0]
We introduce efficient measures of magic resource for pure quantum states with a sampling cost independent of the number of qubits.
We show the transition of classically simulable stabilizer states into intractable quantum states on the IonQ quantum computer.
arXiv Detail & Related papers (2022-04-21T12:50:47Z) - Improved Graph Formalism for Quantum Circuit Simulation [77.34726150561087]
We show how to efficiently simplify stabilizer states to canonical form.
We characterize all linearly dependent triplets, revealing symmetries in the inner products.
Using our novel controlled-Pauli $Z$ algorithm, we improve runtime for inner product computation from $O(n3)$ to $O(nd2)$ where $d$ is the maximum degree of the graph.
arXiv Detail & Related papers (2021-09-20T05:56:25Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Iterative Quantum Assisted Eigensolver [0.0]
We provide a hybrid quantum-classical algorithm for approximating the ground state of a Hamiltonian.
Our algorithm builds on the powerful Krylov subspace method in a way that is suitable for current quantum computers.
arXiv Detail & Related papers (2020-10-12T12:25:16Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.