Coherent spin-spin coupling mediated by virtual microwave photons
- URL: http://arxiv.org/abs/2108.01206v2
- Date: Thu, 12 May 2022 13:45:17 GMT
- Title: Coherent spin-spin coupling mediated by virtual microwave photons
- Authors: Patrick Harvey-Collard, Jurgen Dijkema, Guoji Zheng, Amir Sammak,
Giordano Scappucci, and Lieven M. K. Vandersypen
- Abstract summary: We report the coherent coupling of two electron spins at a distance via virtual microwave photons.
Achieving spin-spin coupling without real photons is essential to long-range two-qubit gates between spin qubits and scalable networks of spin qubits on a chip.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report the coherent coupling of two electron spins at a distance via
virtual microwave photons. Each spin is trapped in a silicon double quantum dot
at either end of a superconducting resonator, achieving spin-photon couplings
up to around $g_s/2\pi = 40 \ \text{MHz}$. As the two spins are brought into
resonance with each other, but detuned from the photons, an avoided crossing
larger than the spin linewidths is observed with an exchange splitting around
$2J/2\pi = 20 \ \text{MHz}$. In addition, photon-number states are resolved
from the shift $2\chi_s/2\pi = -13 \ \text{MHz}$ that they induce on the spin
frequency. These observations demonstrate that we reach the strong dispersive
regime of circuit quantum electrodynamics with spins. Achieving spin-spin
coupling without real photons is essential to long-range two-qubit gates
between spin qubits and scalable networks of spin qubits on a chip.
Related papers
- Fast optical control of a coherent hole spin in a microcavity [1.7620322831838233]
coherent spin control has not yet been integrated with a state-of-the-art single-photon source.
We demonstrate coherent rotations of a hole spin around an arbitrary axis of the Bloch sphere, achieving a maximum pi-pulse fidelity of 98.6%.
The cavity enhances the Raman process, enabling ultra-fast Rabi frequencies above 1 GHz.
arXiv Detail & Related papers (2024-07-26T17:13:09Z) - Microwave Control of the Tin-Vacancy Spin Qubit in Diamond with a
Superconducting Waveguide [0.38367845064465667]
Group-IV color centers in diamond are promising candidates for quantum networks.
We demonstrate coherent spin manipulation and obtain a coherence time of up to $T = 430,mu$s.
A nearby coupling $13mathrmC$ spin may serve as a quantum memory.
arXiv Detail & Related papers (2024-03-01T13:30:39Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Longitudinal coupling between electrically driven spin-qubits and a resonator [0.0]
We study spin qubits confined in quantum dots at zero magnetic fields that are driven periodically by electrical fields and are coupled to a microwave resonator.
We find both transverse and longitudinal couplings between the Floquet spin qubit and the resonator, which can be selectively activated by modifying the driving frequency.
arXiv Detail & Related papers (2023-01-24T17:42:41Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Quantum control of the tin-vacancy spin qubit in diamond [41.74498230885008]
Group-IV color centers in diamond are a promising light-matter interface for quantum networking devices.
The negatively charged tin-vacancy center (SnV) is particularly interesting, as its large spin-orbit coupling offers strong protection against phonon dephasing.
We demonstrate multi-axis coherent control of the SnV spin qubit via an all-optical stimulated Raman drive.
arXiv Detail & Related papers (2021-06-01T18:36:12Z) - Long-Distance Superexchange between Semiconductor Quantum-Dot Electron
Spins [0.0]
We show evidence for long-distance spin-chain-mediated superexchange between electron spin qubits in semiconductor quantum dots.
Superexchange is a promising technique to create long-distance coupling between quantum-dot spin qubits.
arXiv Detail & Related papers (2020-09-13T19:50:59Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.