Waveguide quantum electrodynamics at the onset of spin-spin correlations
- URL: http://arxiv.org/abs/2404.03727v2
- Date: Fri, 10 Jan 2025 08:51:18 GMT
- Title: Waveguide quantum electrodynamics at the onset of spin-spin correlations
- Authors: Sebastián Roca-Jerat, Marcos Rubín-Osanz, Mark D. Jenkins, Agustín Camón, Pablo J. Alonso, David Zueco, Fernando Luis,
- Abstract summary: We find that molecules belonging to one of the two crystal sublattices form one-dimensional spin chains.
The microwave transmission shows evidences for the collective coupling of quasi-identical spins to the propagating photons.
- Score: 36.136619420474766
- License:
- Abstract: We explore the competition between light-mediated and intrinsic matter-matter interactions in waveguide quantum electrodynamics. For this, we couple a superconducting transmission line to a model magnetic material, made of organic free radical molecules with a spin $S=1/2$ and a $g_{S}$ factor very close to that of a free electron. The microwave transmission has been measured in a wide range of temperatures ($0.013$ K $\leq T \leq 2$ K), magnetic fields ($0\leq B \leq 0.5$ T) and frequencies ($0 \leq \omega/2 \pi \leq 14$ GHz). We find that molecules belonging to one of the two crystal sublattices form one-dimensional spin chains. Temperature then controls the intrinsic correlations along these chains in a continuous and monotonic way. In the paramagnetic region ($T > 0.7$ K), the microwave transmission shows evidences for the collective coupling of quasi-identical spins to the propagating photons, with coupling strengths that reach values close to the dissipation rates. As $T$ decreases, the growth of spin correlations, combined with the anisotropy in the spin-spin exchange constants, tend to suppress the collective spin-photon coupling. In this regime, the spin visibility in transmission reflects also a gradual change in the nature of the dominant spin excitations, from single spin flips to bosonic magnons.
Related papers
- Quantum Phonon Dynamics Induced Spontaneous Spin-Orbit Coupling [9.748987642024122]
A spin-dependent electron-phonon coupling model is investigated on a half-filled square lattice.
Spin-orbit coupling emerges as an order in the ground state for any $lambda$ in the adiabatic limit.
Our work opens up the possibility of hidden spin-orbit coupling in materials where it is otherwise forbidden by lattice symmetry.
arXiv Detail & Related papers (2024-10-22T12:19:52Z) - Unveiling nonmagnetic phase and many-body entanglement in two-dimensional random quantum magnets Sr$_2$CuTe$_{1-x}$W$_x$O$_6$ [2.7204116565403744]
We capture the physics of a series of spin stripe/2$ Heisenberg antiferromagnet compounds on a square lattice.
An intermediate range of $x in [0.08, 0.55]$ is identified for a nonmagnetic phase without the long-range N'eel or stripe order.
Deep inside this phase around $x = 0.3$, we observe signatures potentially linked to randomness-induced short-range spin-liquid-like states.
arXiv Detail & Related papers (2024-07-08T13:22:51Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - A hole-Cr$^{+}$ nano-magnet in a semiconductor quantum dot [0.0]
We show that the negatively charged Cr$+$ ion, an excited state of the Cr in II-VI semiconductor, can be stable when inserted in a CdTe quantum dot (QD)
The Cr$+$ attracts a heavy-hole in the QD and form a stable hole-Cr$+$ complex.
optical probing of this system reveals a ferromagnetic coupling between heavy-holes and Cr$+$ spins.
arXiv Detail & Related papers (2021-07-07T13:05:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Experimental Constraint on an Exotic Parity-Odd Spin- and
Velocity-Dependent Interaction with a Single Electron Spin Quantum Sensor [6.887744934296352]
Experiment set improved constraints on the exotic spin- and velocity-dependent interaction within the force range from 1 to 330 $mu$m.
The upper limit of the coupling $g_Aeg_VN $ at $200 mu m$ is $| g_Ae g_VN| leq 8.0times10-19$, significantly improving the current laboratory limit by more than four orders of magnitude.
arXiv Detail & Related papers (2020-09-19T15:31:21Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.