論文の概要: Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning
- arxiv url: http://arxiv.org/abs/2409.19829v1
- Date: Sun, 29 Sep 2024 23:57:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:58:43.908273
- Title: Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning
- Title(参考訳): 分散型非ラベル運動計画のためのグラフニューラルネットワークの一般化可能性
- Authors: Shreyas Muthusamy, Damian Owerko, Charilaos I. Kanatsoulis, Saurav Agarwal, Alejandro Ribeiro,
- Abstract要約: ラベルなしの動作計画では、衝突回避を確保しながら、ロボットのセットを目標の場所に割り当てる。
この問題は、探査、監視、輸送などの応用において、マルチロボットシステムにとって不可欠なビルディングブロックを形成している。
この問題に対処するために、各ロボットは、その400ドルのアネレストロボットと$k$アネレストターゲットの位置のみを知っている分散環境で対処する。
- 参考スコア(独自算出の注目度): 72.86540018081531
- License:
- Abstract: Unlabeled motion planning involves assigning a set of robots to target locations while ensuring collision avoidance, aiming to minimize the total distance traveled. The problem forms an essential building block for multi-robot systems in applications such as exploration, surveillance, and transportation. We address this problem in a decentralized setting where each robot knows only the positions of its $k$-nearest robots and $k$-nearest targets. This scenario combines elements of combinatorial assignment and continuous-space motion planning, posing significant scalability challenges for traditional centralized approaches. To overcome these challenges, we propose a decentralized policy learned via a Graph Neural Network (GNN). The GNN enables robots to determine (1) what information to communicate to neighbors and (2) how to integrate received information with local observations for decision-making. We train the GNN using imitation learning with the centralized Hungarian algorithm as the expert policy, and further fine-tune it using reinforcement learning to avoid collisions and enhance performance. Extensive empirical evaluations demonstrate the scalability and effectiveness of our approach. The GNN policy trained on 100 robots generalizes to scenarios with up to 500 robots, outperforming state-of-the-art solutions by 8.6\% on average and significantly surpassing greedy decentralized methods. This work lays the foundation for solving multi-robot coordination problems in settings where scalability is important.
- Abstract(参考訳): ラベルなしの運動計画では、衝突回避を確保しつつ、移動距離を最小にすることを目的として、ロボットのセットを目標の場所に割り当てる。
この問題は、探査、監視、輸送などの応用において、マルチロボットシステムにとって不可欠なビルディングブロックを形成している。
この問題に対処するために、各ロボットは、その400ドルのアネレストロボットと$k$アネレストターゲットの位置のみを知っている分散環境で対処する。
このシナリオは組合せ代入と連続空間運動計画の要素を組み合わせることで、従来の集中型アプローチにおいて大きなスケーラビリティ上の課題を提起する。
これらの課題を克服するために,グラフニューラルネットワーク(GNN)を用いて学習した分散ポリシを提案する。
GNN は,(1) ロボットが隣人と通信する情報を判断し,(2) 受信した情報をローカルな観察と統合する方法を判断することを可能にする。
我々は,ハンガリーの集中型アルゴリズムをエキスパートポリシーとして模倣学習を用いてGNNを訓練し,さらに強化学習を用いて微調整を行い,衝突を回避し,性能を向上させる。
大規模な経験的評価は、我々のアプローチのスケーラビリティと有効性を示している。
100台のロボットで訓練されたGNNポリシーは、最大500台のロボットでシナリオを一般化し、最先端のソリューションを平均8.6倍に上回り、非集中的な手法をはるかに上回っている。
この作業は、スケーラビリティが重要である設定において、マルチロボット調整問題を解決するための基盤となる。
関連論文リスト
- LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Asynchronous Perception-Action-Communication with Graph Neural Networks [93.58250297774728]
グローバルな目的を達成するため,大規模なロボット群における協調作業は,大規模環境における課題である。
ロボットはパーセプション・アクション・コミュニケーションループを実行し、ローカル環境を認識し、他のロボットと通信し、リアルタイムで行動を起こす必要がある。
近年では、フロッキングやカバレッジ制御などのアプリケーションでグラフニューラルネットワーク(GNN)を使用してこの問題に対処している。
本稿では、分散化されたGNNを用いてナビゲーション動作を計算し、通信のためのメッセージを生成するロボット群における非同期PACフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T21:20:50Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
ロボットがチームサブモジュールの目的を最大化するために共同で行動を選択する必要があるアプリケーションに焦点を当てる。
分散通信によるサブモジュール化に向けた汎用学習アーキテクチャを提案する。
大規模ロボットネットワークによるアクティブターゲットカバレッジのシナリオにおいて、GNNベースの学習アプローチのパフォーマンスを実証します。
論文 参考訳(メタデータ) (2021-05-18T15:32:07Z) - Large Scale Distributed Collaborative Unlabeled Motion Planning with
Graph Policy Gradients [122.85280150421175]
本研究では,運動制約と空間制約を多数のロボットに対して2次元空間で解くための学習法を提案する。
ロボットのポリシーをパラメータ化するためにグラフニューラルネットワーク(GNN)を用いる。
論文 参考訳(メタデータ) (2021-02-11T21:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。