Cross-Modal Analysis of Human Detection for Robotics: An Industrial Case
Study
- URL: http://arxiv.org/abs/2108.01495v1
- Date: Tue, 3 Aug 2021 13:33:37 GMT
- Title: Cross-Modal Analysis of Human Detection for Robotics: An Industrial Case
Study
- Authors: Timm Linder, Narunas Vaskevicius, Robert Schirmer, Kai O. Arras
- Abstract summary: We conduct a systematic cross-modal analysis of sensor-algorithm combinations typically used in robotics.
We compare the performance of state-of-the-art person detectors for 2D range data, 3D lidar, and RGB-D data.
We extend a strong image-based RGB-D detector to provide cross-modal supervision for lidar detectors in the form of weak 3D bounding box labels.
- Score: 7.844709223688293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in sensing and learning algorithms have led to increasingly mature
solutions for human detection by robots, particularly in selected use-cases
such as pedestrian detection for self-driving cars or close-range person
detection in consumer settings. Despite this progress, the simple question
"which sensor-algorithm combination is best suited for a person detection task
at hand?" remains hard to answer. In this paper, we tackle this issue by
conducting a systematic cross-modal analysis of sensor-algorithm combinations
typically used in robotics. We compare the performance of state-of-the-art
person detectors for 2D range data, 3D lidar, and RGB-D data as well as
selected combinations thereof in a challenging industrial use-case.
We further address the related problems of data scarcity in the industrial
target domain, and that recent research on human detection in 3D point clouds
has mostly focused on autonomous driving scenarios. To leverage these
methodological advances for robotics applications, we utilize a simple, yet
effective multi-sensor transfer learning strategy by extending a strong
image-based RGB-D detector to provide cross-modal supervision for lidar
detectors in the form of weak 3D bounding box labels.
Our results show a large variance among the different approaches in terms of
detection performance, generalization, frame rates and computational
requirements. As our use-case contains difficulties representative for a wide
range of service robot applications, we believe that these results point to
relevant open challenges for further research and provide valuable support to
practitioners for the design of their robot system.
Related papers
- Tiny Robotics Dataset and Benchmark for Continual Object Detection [6.4036245876073234]
This work introduces a novel benchmark to evaluate the continual learning capabilities of object detection systems in tiny robotic platforms.
Our contributions include: (i) Tiny Robotics Object Detection (TiROD), a comprehensive dataset collected using a small mobile robot, designed to test the adaptability of object detectors across various domains and classes; (ii) an evaluation of state-of-the-art real-time object detectors combined with different continual learning strategies on this dataset; and (iii) we publish the data and the code to replicate the results to foster continuous advancements in this field.
arXiv Detail & Related papers (2024-09-24T16:21:27Z) - Multimodal Anomaly Detection based on Deep Auto-Encoder for Object Slip
Perception of Mobile Manipulation Robots [22.63980025871784]
The proposed framework integrates heterogeneous data streams collected from various robot sensors, including RGB and depth cameras, a microphone, and a force-torque sensor.
The integrated data is used to train a deep autoencoder to construct latent representations of the multisensory data that indicate the normal status.
Anomalies can then be identified by error scores measured by the difference between the trained encoder's latent values and the latent values of reconstructed input data.
arXiv Detail & Related papers (2024-03-06T09:15:53Z) - LS-VOS: Identifying Outliers in 3D Object Detections Using Latent Space
Virtual Outlier Synthesis [10.920640666237833]
LiDAR-based 3D object detectors have achieved unprecedented speed and accuracy in autonomous driving applications.
They are often biased toward high-confidence predictions or return detections where no real object is present.
We propose LS-VOS, a framework for identifying outliers in 3D object detections.
arXiv Detail & Related papers (2023-10-02T07:44:26Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z) - Addressing Data Scarcity in Multimodal User State Recognition by
Combining Semi-Supervised and Supervised Learning [1.1688030627514532]
We present a multimodal machine learning approach for detecting dis-/agreement and confusion states in a human-robot interaction environment.
We achieve an average F1-score of 81.1% for dis-/agreement detection with a small amount of labeled data and a large unlabeled data set.
arXiv Detail & Related papers (2022-02-08T10:41:41Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Domain and Modality Gaps for LiDAR-based Person Detection on Mobile
Robots [91.01747068273666]
This paper studies existing LiDAR-based person detectors with a particular focus on mobile robot scenarios.
Experiments revolve around the domain gap between driving and mobile robot scenarios, as well as the modality gap between 3D and 2D LiDAR sensors.
Results provide practical insights into LiDAR-based person detection and facilitate informed decisions for relevant mobile robot designs and applications.
arXiv Detail & Related papers (2021-06-21T16:35:49Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.