論文の概要: Scheduling Aerial Vehicles in an Urban Air Mobility Scheme
- arxiv url: http://arxiv.org/abs/2108.01608v1
- Date: Tue, 3 Aug 2021 16:18:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-04 13:55:35.107929
- Title: Scheduling Aerial Vehicles in an Urban Air Mobility Scheme
- Title(参考訳): 都市空調計画における航空車両のスケジューリング
- Authors: Emmanouil S. Rigas, Panayiotis Kolios, Georgios Ellinas
- Abstract要約: Urban Air Mobilityの概念は、この問題に対処する方法として、大企業や組織によって推進されてきた。
本研究は,顧客へのサービス型AVの割り当てをスケジューリングする際の課題について考察する。
スケーラビリティ問題に対処するため,一度に1つのAVをインクリメンタルに解くアルゴリズムが提案されている。
- 参考スコア(独自算出の注目度): 7.287830861862002
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Highly populated cities face several challenges, one of them being the
intense traffic congestion. In recent years, the concept of Urban Air Mobility
has been put forward by large companies and organizations as a way to address
this problem, and this approach has been rapidly gaining ground. This
disruptive technology involves aerial vehicles (AVs) for hire than can be
utilized by customers to travel between locations within large cities. This
concept has the potential to drastically decrease traffic congestion and reduce
air pollution, since these vehicles typically use electric motors powered by
batteries. This work studies the problem of scheduling the assignment of AVs to
customers, having as a goal to maximize the serviced customers and minimize the
energy consumption of the AVs by forcing them to fly at the lowest possible
altitude. Initially, an Integer Linear Program (ILP) formulation is presented,
that is solved offline and optimally, followed by a near-optimal algorithm,
that solves the problem incrementally, one AV at a time, to address scalability
issues, allowing scheduling in problems involving large numbers of locations,
AVs, and customer requests.
- Abstract(参考訳): 人口の多い都市はいくつかの困難に直面しており、そのうちの1つは交通渋滞である。
近年では、この問題に対処する手段として、大企業や組織によって、都市空気移動の概念が進められており、このアプローチが急速に定着している。
このディスラプティブな技術は、顧客が大都市内の場所を移動できるよりも、雇用のための航空車両(avs)である。
このコンセプトは、一般的にバッテリーを動力とする電動モーターを使用するため、交通渋滞を劇的に減らし、大気汚染を減らす可能性がある。
本研究は、顧客へのAVの割り当てを計画し、最低限の高度で飛行させることで、サービスされた顧客を最大化し、AVのエネルギー消費を最小限にすることを目的としている。
当初、Integer Linear Program (ILP) の定式化が提示され、オフラインで最適に解決され、続いてほぼ最適アルゴリズムによって、一度に1つのAVを段階的に解決し、スケーラビリティの問題に対処し、多数のロケーション、AV、顧客要求を含む問題のスケジューリングを可能にする。
関連論文リスト
- Diffusion-based Auction Mechanism for Efficient Resource Management in 6G-enabled Vehicular Metaverses [57.010829427434516]
6G対応のVehicular Metaversesでは、車両は物理的車両のデジタルレプリカとして機能するVT(Vine Twins)によって表現される。
VTタスクはリソース集約であり、高速処理のために地上基地局(BS)にオフロードする必要がある。
地上BSとUAV間の資源配分を最適化する学習型修正第2バイド(MSB)オークション機構を提案する。
論文 参考訳(メタデータ) (2024-11-01T04:34:54Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - Fast Decision Support for Air Traffic Management at Urban Air Mobility
Vertiports using Graph Learning [7.2547164017692625]
アーバン・エアモビリティ(UAM)航空機は、バーティポートと呼ばれる小さな空港から運用される。
このスケジュールをリアルタイムで管理することは、従来の航空交通管制官にとって難しいが、代わりに自動化されたソリューションを求めている。
本稿では,UAM-VSM(Urban Air Mobility - Vertiport Schedule Management)問題に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-17T16:05:44Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - Designing Optimal Personalized Incentive for Traffic Routing using BIG
Hype algorithm [3.7597202216941783]
都市レベルでプラグイン型電気自動車と従来型燃料電池を最適にルーティングする問題について検討する。
我々のモデルでは、通勤者は、旅行時間と、市や駐車場、サービスステーションを利用するための金銭的費用を組み合わせた地域費用を、自力で最小化することを目的としている。
我々は、これらの金融インセンティブを大規模バイレベルゲームとして最適に設計する問題を定式化する。
論文 参考訳(メタデータ) (2023-04-24T11:13:10Z) - A deep reinforcement learning approach to assess the low-altitude
airspace capacity for urban air mobility [0.0]
都市空力は、低高度空域を利用して高速で安全な旅行手段を提供することを目的としている。
当局は現在も、都市空輸に適用される新しい飛行規則の見直しに取り組んでいる。
深い強化学習アプローチと深い決定論的政策勾配アルゴリズムを用いて,自律型UAV経路計画フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-23T23:38:05Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Efficient algorithms for electric vehicles' min-max routing problem [4.640835690336652]
輸送部門から排出される温室効果ガスの増加は、企業や政府が電気自動車(EV)の増産と支援を図っている。
近年の都市化と電子商取引の進展により、輸送会社は従来の車両をEVに置き換え、持続的で環境に優しい運転の取り組みを強化している。
EV車両の展開は、限られた範囲を緩和し、バッテリー劣化率を軽減するために、効率的なルーティングと充電戦略を要求する。
論文 参考訳(メタデータ) (2020-08-07T18:45:26Z) - An Autonomous Free Airspace En-route Controller using Deep Reinforcement
Learning Techniques [24.59017394648942]
航空機の任意の数の航空機を3次元非構造空域に誘導する航空交通制御モデルが提示される。
その結果,航空交通管制モデルが現実的な交通密度で良好に機能していることが示唆された。
潜在的な衝突の100%を回避し、潜在的な衝突の89.8%を防止して、空域を管理することができる。
論文 参考訳(メタデータ) (2020-07-03T10:37:25Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
動的環境において,人工知能(AI)による無人航空機(UAV)による次世代ネットワーク支援が提案されている。
AI対応のUAV支援無線ネットワーク(UAWN)では、複数のUAVが航空基地局として使用され、ダイナミックな環境に迅速に適応することができる。
AIフレームワークの利点として、従来のUAWNのいくつかの課題が回避され、ネットワークパフォーマンスが向上し、信頼性が向上し、アジャイル適応性が向上する。
論文 参考訳(メタデータ) (2020-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。