Personalized Federated Learning with Clustering: Non-IID Heart Rate
Variability Data Application
- URL: http://arxiv.org/abs/2108.01903v1
- Date: Wed, 4 Aug 2021 08:24:23 GMT
- Title: Personalized Federated Learning with Clustering: Non-IID Heart Rate
Variability Data Application
- Authors: Joo Hun Yoo, Ha Min Son, Hyejun Jeong, Eun-Hye Jang, Ah Young Kim, Han
Young Yu, Hong Jin Jeon, Tai-Myoung Chung
- Abstract summary: We propose Personalized Federated Cluster Models, a hierarchical clustering-based FL process, to predict Major Depressive Disorder severity from Heart Rate Variability.
By allowing clients to receive more personalized model, we address problems caused by non-IID data, showing an accuracy increase in severity prediction.
- Score: 0.1465840097113565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While machine learning techniques are being applied to various fields for
their exceptional ability to find complex relations in large datasets, the
strengthening of regulations on data ownership and privacy is causing
increasing difficulty in its application to medical data. In light of this,
Federated Learning has recently been proposed as a solution to train on private
data without breach of confidentiality. This conservation of privacy is
particularly appealing in the field of healthcare, where patient data is highly
confidential. However, many studies have shown that its assumption of
Independent and Identically Distributed data is unrealistic for medical data.
In this paper, we propose Personalized Federated Cluster Models, a hierarchical
clustering-based FL process, to predict Major Depressive Disorder severity from
Heart Rate Variability. By allowing clients to receive more personalized model,
we address problems caused by non-IID data, showing an accuracy increase in
severity prediction. This increase in performance may be sufficient to use
Personalized Federated Cluster Models in many existing Federated Learning
scenarios.
Related papers
- Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
Conditional Variational Autoencoders (CVAEs) trained on feature vectors extracted from large pre-trained vision foundation models.
Our method notably outperforms traditional approaches in both medical and natural image domains.
Results underscore the potential of generative models to significantly impact deep learning applications in data-scarce and privacy-sensitive environments.
arXiv Detail & Related papers (2024-08-01T15:26:24Z) - Enhancing Performance for Highly Imbalanced Medical Data via Data Regularization in a Federated Learning Setting [6.22153888560487]
The goal of the proposed method is to enhance model performance for cardiovascular disease prediction.
The method is evaluated across four datasets for cardiovascular disease prediction, which are scattered across different clients.
arXiv Detail & Related papers (2024-05-30T19:15:38Z) - A Distributed Privacy Preserving Model for the Detection of Alzheimer's Disease [0.0]
This paper introduces a HIPAA compliant framework that can train from distributed data.
I then propose a multimodal vertical federated model for Alzheimer's Disease (AD) detection.
The VFL architecture proposed herein offers a novel distributed architecture, enabling collaborative learning across diverse sources of medical data.
arXiv Detail & Related papers (2023-12-15T22:09:04Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
In the medical field, multi-center collaborations are often sought to yield more generalizable findings by leveraging the heterogeneity of patient and clinical data.
Recent privacy regulations hinder the possibility to share data, and consequently, to come up with machine learning-based solutions that support diagnosis and prognosis.
We present a decentralized distributed method that integrates features from local nodes, providing models able to generalize across multiple datasets while maintaining privacy.
arXiv Detail & Related papers (2022-06-20T23:49:38Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
Collaborative machine learning techniques such as federated learning (FL) enable the training of models on effectively larger datasets without data transfer.
Recent initiatives have demonstrated that segmentation models trained with FL can achieve performance similar to locally trained models.
However, FL is not a fully privacy-preserving technique and privacy-centred attacks can disclose confidential patient data.
arXiv Detail & Related papers (2021-07-06T12:57:32Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
We propose Gradient-sanitized Wasserstein Generative Adrial Networks (GS-WGAN)
GS-WGAN allows releasing a sanitized form of sensitive data with rigorous privacy guarantees.
We find our approach consistently outperforms state-of-the-art approaches across multiple metrics.
arXiv Detail & Related papers (2020-06-15T10:01:01Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
We propose the first syntactic approach for offering privacy in the context of federated learning.
Our approach aims to maximize utility or model performance, while supporting a defensible level of privacy.
We perform a comprehensive empirical evaluation on two important problems in the healthcare domain, using real-world electronic health data of 1 million patients.
arXiv Detail & Related papers (2020-02-21T02:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.