Controllable entangled state distribution in a dual-rail reconfigurable
optical network
- URL: http://arxiv.org/abs/2108.01946v1
- Date: Wed, 4 Aug 2021 10:26:37 GMT
- Title: Controllable entangled state distribution in a dual-rail reconfigurable
optical network
- Authors: Shuto Osawa, David S. Simon, Vladimir S. Malinovsky, Alexander V.
Sergienko
- Abstract summary: Reconfigurable distribution of entangled states is essential for operation of quantum networks connecting multiple devices such as quantum memories and quantum computers.
We introduce new quantum distribution network architecture enabling control of the entangled state propagation direction using linear-optical devices and phase shifters.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconfigurable distribution of entangled states is essential for operation of
quantum networks connecting multiple devices such as quantum memories and
quantum computers. We introduce new quantum distribution network architecture
enabling control of the entangled state propagation direction using
linear-optical devices and phase shifters and offering reconfigurable
connections between multiple quantum nodes. The basic two-photon entanglement
distribution scheme is first introduced to illustrate the principle of
operation. The scheme is then extended to a network structure with increased
number of spatial modes connecting potential end-users. We present several
examples of controllable network configuration modifications using
time-dependent phase shifters.
Related papers
- Resilient Entanglement Distribution in a Multihop Quantum Network [0.605746798865181]
We introduce multihop quantum networks to improve network reach and resilience.
We present multihop two-qubit polarization-entanglement distribution within a quantum network at the Oak Ridge National Laboratory campus.
arXiv Detail & Related papers (2024-07-29T22:42:08Z) - Resource Placement for Rate and Fidelity Maximization in Quantum Networks [8.707824275470188]
Existing classical optical network infrastructure cannot be immediately used for quantum network applications due to photon loss.
We present a comprehensive framework for network planning, aiming to efficiently distributing quantum repeaters across existing infrastructure.
We explore the effect of quantum memory multiplexing within quantum repeaters, as well as the influence of memory coherence time on quantum network utility.
arXiv Detail & Related papers (2023-08-30T18:45:21Z) - A scheme for multipartite entanglement distribution via separable
carriers [68.8204255655161]
We develop a strategy for entanglement distribution via separable carriers that can be applied to any number of network nodes.
We show that our protocol results in multipartite entanglement, while the carrier mediating the process is always in a separable state with respect to the network.
arXiv Detail & Related papers (2022-06-20T10:50:45Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Distribution of Gaussian Entanglement in Linear Optical Systems [0.0]
Entanglement is an essential ingredient for building a quantum network that can have many applications.
We study the conservation and distribution of Gaussian entanglement in a linear network using a new quantifier for bipartite entanglement.
arXiv Detail & Related papers (2021-05-27T20:34:54Z) - A Reconfigurable Quantum Local Area Network Over Deployed Fiber [1.1713998235451095]
We implement flex-grid entanglement distribution in a deployed network for the first time.
We quantify the quality of the distributed polarization entanglement via log-negativity.
We demonstrate one possible quantum protocol enabled by the distributed entanglement network.
arXiv Detail & Related papers (2021-02-26T17:08:03Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.