論文の概要: Robustness of convolutional neural networks to physiological ECG noise
- arxiv url: http://arxiv.org/abs/2108.01995v1
- Date: Mon, 2 Aug 2021 08:16:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-06 02:06:50.331182
- Title: Robustness of convolutional neural networks to physiological ECG noise
- Title(参考訳): 生理学的ECGノイズに対する畳み込みニューラルネットワークのロバスト性
- Authors: J. Venton, P. M. Harris, A. Sundar, N. A. S. Smith, P. J. Aston
- Abstract要約: 心電図(ECG)は、医療において最も普及している診断ツールの一つであり、心血管疾患の診断を支援する。
深層学習法は、心電図信号から障害の徴候を検出する手法として成功し、普及している。
生理的ECGノイズを含む様々な要因に対するこれらの手法の堅牢性には、オープンな疑問がある。
我々は、SPAR(Symmetric Projection Attractor Reconstruction)と頭蓋骨画像変換を適用する前に、ECGデータセットのクリーンでノイズの多いバージョンを生成する。
事前訓練された畳み込みニューラルネットワークは、これらの画像変換を分類するために転送学習を用いて訓練される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The electrocardiogram (ECG) is one of the most widespread diagnostic tools in
healthcare and supports the diagnosis of cardiovascular disorders. Deep
learning methods are a successful and popular technique to detect indications
of disorders from an ECG signal. However, there are open questions around the
robustness of these methods to various factors, including physiological ECG
noise. In this study we generate clean and noisy versions of an ECG dataset
before applying Symmetric Projection Attractor Reconstruction (SPAR) and
scalogram image transformations. A pretrained convolutional neural network is
trained using transfer learning to classify these image transforms. For the
clean ECG dataset, F1 scores for SPAR attractor and scalogram transforms were
0.70 and 0.79, respectively, and the scores decreased by less than 0.05 for the
noisy ECG datasets. Notably, when the network trained on clean data was used to
classify the noisy datasets, performance decreases of up to 0.18 in F1 scores
were seen. However, when the network trained on the noisy data was used to
classify the clean dataset, the performance decrease was less than 0.05. We
conclude that physiological ECG noise impacts classification using deep
learning methods and careful consideration should be given to the inclusion of
noisy ECG signals in the training data when developing supervised networks for
ECG classification.
- Abstract(参考訳): 心電図(ECG)は、医療において最も普及している診断ツールの一つであり、心血管疾患の診断を支援する。
深層学習法は、心電図信号から障害の徴候を検出する手法として成功し、普及している。
しかしながら、これらの方法が生理的心電図ノイズを含む様々な要因に対して頑健性に関する疑問がある。
本研究では,SPAR(Symmetric Projection Attractor Reconstruction)と頭蓋骨画像変換を適用する前に,ECGデータセットのクリーンでノイズの多いバージョンを生成する。
事前訓練された畳み込みニューラルネットワークは、これらの画像変換を分類するために転送学習を用いて訓練される。
クリーンECGデータセットでは,SPARアトラクションのF1スコアは0.70と0.79であり,ノイズECGデータセットのスコアは0.05以下であった。
特に、クリーンデータでトレーニングされたネットワークを使用してノイズの多いデータセットを分類すると、f1スコアで最大0.18パーセントのパフォーマンス低下が見られた。
しかし,ノイズデータにトレーニングしたネットワークを用いてクリーンデータセットを分類した場合,0.05未満の性能低下が見られた。
本研究は, 深層学習を用いた生理的ECGノイズが分類に影響を及ぼし, トレーニングデータにノイズの多いECG信号が組み込まれていることを考慮すべきであると結論した。
関連論文リスト
- EB-GAME: A Game-Changer in ECG Heartbeat Anomaly Detection [7.574088346030774]
本稿では, 心電図における異常信号の検出に, 正規信号のラベルのみをトレーニングデータとして用いた。
イメージをパッチに分割して学習し,自動エンコーダをマスクする自己教師型視覚変換器にヒントを得て,脳波異常検出モデルEB-GAMEを導入する。
論文 参考訳(メタデータ) (2024-04-08T13:01:59Z) - Deep Learning Models for Arrhythmia Classification Using Stacked
Time-frequency Scalogram Images from ECG Signals [4.659427498118277]
本稿では,心電図に基づく不整脈分類のためのAI自動分類システムを提案する。
深層学習に基づく解法は心電図に基づく不整脈分類のために提案されている。
論文 参考訳(メタデータ) (2023-12-01T03:16:32Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
本稿では,ECG信号の周期的性質をモデル化する新しいECG-Segment Based Learning (ECG-SL) フレームワークを提案する。
この構造的特徴に基づき, 時間的モデルを用いて, 各種臨床業務の時間的情報学習を行う。
提案手法はベースラインモデルより優れ,3つの臨床応用におけるタスク固有手法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:17:55Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
入力ECG信号はまずセグメント化され、正規化され、その後、特徴抽出と分類のためにVGGとLSTMネットワークに入力される。
注目機構(SEブロック)をコアネットワークに組み込んで重要な特徴の重み付けを行う。
論文 参考訳(メタデータ) (2022-10-31T07:36:48Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
本稿では,心電図に基づく心拍数型の自動分類アルゴリズムを提案する。
本稿では,2ストリームアーキテクチャを用いて,これに基づくECG認識の強化版を提案する。
MIT-BIH Arrhythmia Databaseの結果、提案アルゴリズムは99.38%の精度で実行されている。
論文 参考訳(メタデータ) (2022-10-05T08:14:51Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - Blind ECG Restoration by Operational Cycle-GANs [15.264145425539128]
心電図信号の持続的長期モニタリングは不整脈などの心疾患の早期発見に不可欠である。
非クリニカルECG記録は、ベースライン、信号カット、モーションアーティファクト、QRS振幅の変動、ノイズ、その他の干渉といった深刻なアーティファクトに悩まされることが多い。
サイクル整合型生成対向ネットワーク(Cycle-GAN)を用いた盲検心電図復元のための新しい手法を提案する。
論文 参考訳(メタデータ) (2022-01-29T19:47:17Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。