Testing Quantum Mechanics using Noisy Quantum Computers
- URL: http://arxiv.org/abs/2108.02201v4
- Date: Thu, 25 Aug 2022 15:27:44 GMT
- Title: Testing Quantum Mechanics using Noisy Quantum Computers
- Authors: Kevin Slagle
- Abstract summary: We propose to test quantum mechanics in the high-complexity regime using noisy quantum devices.
We show that quantum mechanics predicts that the fidelity of our procedure decays exponentially with circuit depth.
We find that highly informative experiments should require only thousands qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We outline a proposal to test quantum mechanics in the high-complexity regime
using noisy intermediate-scale quantum (NISQ) devices. The procedure involves
simulating a non-Clifford random circuit, followed by its inverse, and then
checking that the resulting state is the same as the initial state. We are
motivated by the hypothesis that quantum mechanics is not fundamental, but
instead emerges from a theory with less computational power, such as classical
mechanics. This emergent quantum mechanics (EmQM) hypothesis makes the
prediction that quantum computers will not be capable of sufficiently complex
quantum computations. We show that quantum mechanics predicts that the fidelity
of our procedure decays exponentially with circuit depth (due to noise in NISQ
devices), while EmQM predicts that the fidelity will decay significantly more
rapidly for sufficiently deep circuits, which is the experimental signature
that we propose to search for. We estimate rough bounds for when possible
signals of EmQM should be expected. Furthermore, we find that highly
informative experiments should require only thousands qubits.
Related papers
- Enhancing Quantum Field Theory Simulations on NISQ Devices with Hamiltonian Truncation [0.0]
This paper presents an alternative to traditional methods for simulating the real-time evolution in Quantum Field Theories (QFTs) by leveraging Hamiltonian Truncation (HT)
We study the Schwinger model, systematically reducing the complexity of the Hamiltonian via HT while preserving essential physical properties.
For the observables studied in this paper, the HT approach converges quickly with the number of qubits, allowing for the interesting physics processes to be captured without needing many qubits.
arXiv Detail & Related papers (2024-07-26T18:03:20Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum-Error-Mitigation Circuit Groups for Noisy Quantum Metrology [0.0]
Quantum technologies work by utilizing properties inherent in quantum systems such as quantum coherence and quantum entanglement.
Quantum technologies are fragile against an interaction with an environment (decoherence) and in order to utilize them with high accuracy we need to develop error mitigation techniques.
arXiv Detail & Related papers (2023-03-03T10:01:42Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly-coupled quark-gluon plasma (QGP) on a quantum computer.
Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices.
arXiv Detail & Related papers (2020-10-07T18:00:02Z) - Quantum Simulation of Quantum Field Theory in the Light-Front
Formulation [0.0]
Quantum chromodynamics (QCD) describes the structure of hadrons such as the proton at a fundamental level.
Uncertainty in the parton distribution function is the dominant source of error in the $W$ mass measurement at the LHC.
We show how this can be achieved by using the light-front formulation of quantum field theory.
arXiv Detail & Related papers (2020-02-10T18:43:07Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.