Quantum Simulation of Quantum Field Theory in the Light-Front
Formulation
- URL: http://arxiv.org/abs/2002.04016v2
- Date: Wed, 26 Aug 2020 18:00:00 GMT
- Title: Quantum Simulation of Quantum Field Theory in the Light-Front
Formulation
- Authors: Michael Kreshchuk, William M. Kirby, Gary Goldstein, Hugo Beauchemin,
Peter J. Love
- Abstract summary: Quantum chromodynamics (QCD) describes the structure of hadrons such as the proton at a fundamental level.
Uncertainty in the parton distribution function is the dominant source of error in the $W$ mass measurement at the LHC.
We show how this can be achieved by using the light-front formulation of quantum field theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum chromodynamics (QCD) describes the structure of hadrons such as the
proton at a fundamental level. The precision of calculations in QCD limits the
precision of the values of many physical parameters extracted from collider
data. For example, uncertainty in the parton distribution function (PDF) is the
dominant source of error in the $W$ mass measurement at the LHC. Improving the
precision of such measurements is essential in the search for new physics.
Quantum simulation offers an efficient way of studying quantum field theories
(QFTs) such as QCD non-perturbatively. Previous quantum algorithms for
simulating QFTs have qubit requirements that are well beyond the most ambitious
experimental proposals for large-scale quantum computers. Can the qubit
requirements for such algorithms be brought into range of quantum computation
with several thousand logical qubits? We show how this can be achieved by using
the light-front formulation of quantum field theory. This work was inspired by
the similarity of the light-front formulation to quantum chemistry, first noted
by Kenneth Wilson.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
Quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers.
This book provides a self-contained introduction to quantum machine learning for an audience of engineers with a background in probability and linear algebra.
arXiv Detail & Related papers (2022-05-11T12:10:52Z) - Kernel-Function Based Quantum Algorithms for Finite Temperature Quantum
Simulation [5.188498150496968]
We present a quantum kernel function (QKFE) algorithm for solving thermodynamic properties of quantum many-body systems.
As compared to its classical counterpart, namely the kernel method (KPM), QKFE has an exponential advantage in the cost of both time and memory.
We demonstrate its efficiency with applications to one and two-dimensional quantum spin models, and a fermionic lattice.
arXiv Detail & Related papers (2022-02-02T18:00:04Z) - Dequantizing the Quantum Singular Value Transformation: Hardness and
Applications to Quantum Chemistry and the Quantum PCP Conjecture [0.0]
We show that the Quantum Singular Value Transformation can be efficiently "dequantized"
We show that with inverse-polynomial precision, the same problem becomes BQP-complete.
We also discuss how this dequantization technique may help make progress on the central quantum PCP.
arXiv Detail & Related papers (2021-11-17T12:50:13Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Testing Quantum Mechanics using Noisy Quantum Computers [0.0]
We propose to test quantum mechanics in the high-complexity regime using noisy quantum devices.
We show that quantum mechanics predicts that the fidelity of our procedure decays exponentially with circuit depth.
We find that highly informative experiments should require only thousands qubits.
arXiv Detail & Related papers (2021-08-04T17:59:59Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Light-Front Field Theory on Current Quantum Computers [0.06524460254566902]
We present a quantum algorithm for simulation of quantum field theory in the light-front formulation.
We demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics.
arXiv Detail & Related papers (2020-09-16T18:32:00Z) - Quantum simulation of quantum field theories as quantum chemistry [9.208624182273288]
Conformal truncation is a powerful numerical method for solving generic strongly-coupled quantum field theories.
We show that quantum computation could not only help us understand fundamental physics in the lattice approximation, but also simulate quantum field theory methods directly.
arXiv Detail & Related papers (2020-04-28T01:20:04Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.