論文の概要: Adversarial learning of cancer tissue representations
- arxiv url: http://arxiv.org/abs/2108.02223v1
- Date: Wed, 4 Aug 2021 18:00:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-07 02:05:00.788436
- Title: Adversarial learning of cancer tissue representations
- Title(参考訳): 癌組織表現の対立学習
- Authors: Adalberto Claudio Quiros, Nicolas Coudray, Anna Yeaton, Wisuwat
Sunhem, Roderick Murray-Smith, Aristotelis Tsirigos, Ke Yuan
- Abstract要約: 手動のアノテーションを必要とせずに,癌組織の特徴表現を抽出する逆学習モデルを提案する。
これらの表現は乳癌,大腸癌,肺がんの3種類の形態学的特徴を同定することができる。
以上の結果から,本モデルが実際の組織試料の特異な表現特性を捉え,腫瘍進展と腫瘍微小環境のさらなる理解の道を開くことが示唆された。
- 参考スコア(独自算出の注目度): 6.395981404833557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning based analysis of histopathology images shows promise in
advancing the understanding of tumor progression, tumor micro-environment, and
their underpinning biological processes. So far, these approaches have focused
on extracting information associated with annotations. In this work, we ask how
much information can be learned from the tissue architecture itself.
We present an adversarial learning model to extract feature representations
of cancer tissue, without the need for manual annotations. We show that these
representations are able to identify a variety of morphological characteristics
across three cancer types: Breast, colon, and lung. This is supported by 1) the
separation of morphologic characteristics in the latent space; 2) the ability
to classify tissue type with logistic regression using latent representations,
with an AUC of 0.97 and 85% accuracy, comparable to supervised deep models; 3)
the ability to predict the presence of tumor in Whole Slide Images (WSIs) using
multiple instance learning (MIL), achieving an AUC of 0.98 and 94% accuracy.
Our results show that our model captures distinct phenotypic characteristics
of real tissue samples, paving the way for further understanding of tumor
progression and tumor micro-environment, and ultimately refining
histopathological classification for diagnosis and treatment. The code and
pretrained models are available at:
https://github.com/AdalbertoCq/Adversarial-learning-of-cancer-tissue-representations
- Abstract(参考訳): 病理組織像の深層学習に基づく解析は, 腫瘍進展, 腫瘍微小環境, その基盤となる生物学的過程の理解を推し進める上で有望であることを示している。
これまでのところ、これらのアプローチはアノテーションに関連する情報を抽出することに重点を置いている。
本研究では,組織構造自体からどの程度の情報を学べるかを問う。
手動のアノテーションを必要とせずに,癌組織の特徴表現を抽出する逆学習モデルを提案する。
これらの表現は乳癌,大腸癌,肺がんの3種類の形態学的特徴を同定することができる。
1) 潜伏空間における形態的特徴の分離, 2) 潜伏表現を用いて組織型をロジスティック回帰で分類し, AUCの0.97と85%の精度で教師付き深層モデルに匹敵する精度でAUCを分類する能力, 3) マルチ・インスタンス・ラーニング(MIL)を用いて全スライド画像(WSI)における腫瘍の存在を予測し,AUCの0.98と94%の精度を達成する能力によって支持される。
以上の結果から,本モデルは実際の組織標本の特異な表現型の特徴を捉え,腫瘍の進展と微小環境をより深く理解し,最終的に病理組織学的分類を改良し,診断と治療を行った。
https://github.com/AdalbertoCq/Adversarial-learning-of-cancer-tissue-representations
関連論文リスト
- Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
我々は、注意に基づくMILをトレーニングし、データセット内の各画像に対する信頼度を算出し、専門家のアノテーションに対して最も不確実なWSIを選択する。
新たな注意誘導損失により、各クラスにアノテートされた領域がほとんどない、トレーニングされたモデルの精度が向上する。
将来的には、病理組織学における癌分類の臨床的に関連する文脈において、MILモデルのトレーニングに重要な貢献をする可能性がある。
論文 参考訳(メタデータ) (2023-03-02T15:18:58Z) - Domain-specific transfer learning in the automated scoring of
tumor-stroma ratio from histopathological images of colorectal cancer [1.2264932946286657]
腫瘍-ストローマ比 (TSR) は多くの種類の固形腫瘍の予後因子である。
この方法は、大腸癌組織を分類するために訓練された畳み込みニューラルネットワークに基づいている。
論文 参考訳(メタデータ) (2022-12-30T12:27:27Z) - Deep Learning Generates Synthetic Cancer Histology for Explainability
and Education [37.13457398561086]
条件付き生成逆数ネットワーク(英: Conditional Generative Adversarial Network、cGAN)は、合成画像を生成するAIモデルである。
本稿では,cGANを用いた分子サブタイプ腫瘍の分類訓練モデルについて述べる。
腫瘍の病理組織学的所見に対するヒトの理解を増強し, 向上させることが, 明確で直感的なcGANの可視化に有効であることを示す。
論文 参考訳(メタデータ) (2022-11-12T00:14:57Z) - Mapping the landscape of histomorphological cancer phenotypes using
self-supervised learning on unlabeled, unannotated pathology slides [9.27127895781971]
病理形態学的現象型学習は、小さな画像タイルにおける識別画像の特徴の自動発見を通じて行われる。
タイルは、組織形態学的表現型のライブラリを構成する形態学的に類似したクラスターに分類される。
論文 参考訳(メタデータ) (2022-05-04T08:06:55Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
本稿では,GAN(Cycle-Consistency Generative Adversarial Networks)を用いた医用画像生成のためのデータ拡張手法を提案する。
提案モデルでは,正常画像から腫瘍画像を生成することができ,腫瘍画像から正常画像を生成することもできる。
本研究では,従来のデータ拡張手法と合成画像を用いた分類モデルを用いて,実画像を用いた分類モデルを訓練する。
論文 参考訳(メタデータ) (2020-11-15T14:01:24Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z) - Representation Learning of Histopathology Images using Graph Neural
Networks [12.427740549056288]
本稿では,WSI表現学習のための2段階フレームワークを提案する。
色に基づく手法を用いて関連するパッチをサンプリングし、グラフニューラルネットワークを用いてサンプルパッチ間の関係を学習し、画像情報を単一のベクトル表現に集約する。
肺腺癌 (LUAD) と肺扁平上皮癌 (LUSC) の2つの亜型を鑑別するためのアプローチの有用性について検討した。
論文 参考訳(メタデータ) (2020-04-16T00:09:20Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
医用画像の特徴に対処する枠組みを提案する。
このモデルはまず、画像全体の低容量だがメモリ効率のよいネットワークを使用して、最も情報性の高い領域を識別する。
次に、選択したリージョンから詳細を収集するために、別の高容量ネットワークを適用します。
最後に、グローバルおよびローカル情報を集約して最終的な予測を行うフュージョンモジュールを使用する。
論文 参考訳(メタデータ) (2020-02-13T15:28:42Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。