論文の概要: Automatic Detection of Rail Components via A Deep Convolutional
Transformer Network
- arxiv url: http://arxiv.org/abs/2108.02423v1
- Date: Thu, 5 Aug 2021 07:38:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-06 22:01:26.091444
- Title: Automatic Detection of Rail Components via A Deep Convolutional
Transformer Network
- Title(参考訳): 深層畳み込み変圧器ネットワークによるレール部品の自動検出
- Authors: Tiange Wang, Zijun Zhang, Fangfang Yang, and Kwok-Leung Tsui
- Abstract要約: レール,クリップ,ボルトを含む多種鉄道部品を検出するための深層畳み込み変圧器ネットワーク方式を提案する。
提案手法は,アンカーボックス,アスペクト比,デフォルト座標,後処理などの事前設定を不要にすることで,検出パイプラインを単純化する。
総合的な計算結果から,提案手法は既存の最先端手法よりも大きなマージンを持つことを示す。
- 参考スコア(独自算出の注目度): 7.557470133155959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic detection of rail track and its fasteners via using continuously
collected railway images is important to maintenance as it can significantly
improve maintenance efficiency and better ensure system safety. Dominant
computer vision-based detection models typically rely on convolutional neural
networks that utilize local image features and cumbersome prior settings to
generate candidate boxes. In this paper, we propose a deep convolutional
transformer network based method to detect multi-class rail components
including the rail, clip, and bolt. We effectively synergize advantages of the
convolutional structure on extracting latent features from raw images as well
as advantages of transformers on selectively determining valuable latent
features to achieve an efficient and accurate performance on rail component
detections. Our proposed method simplifies the detection pipeline by
eliminating the need of prior settings, such as anchor box, aspect ratio,
default coordinates, and post-processing, such as the threshold for non-maximum
suppression; as well as allows users to trade off the quality and complexity of
the detector with limited training data. Results of a comprehensive
computational study show that our proposed method outperforms a set of existing
state-of-art approaches with large margins
- Abstract(参考訳): 継続的に収集した鉄道画像を用いた鉄道線路及びそのファスナーの自動検出は,メンテナンス効率を著しく向上し,システム安全性の確保を図る上で重要である。
支配的なコンピュータビジョンに基づく検出モデルは、通常、ローカルな画像特徴と厄介な事前設定を利用して候補ボックスを生成する畳み込みニューラルネットワークに依存する。
本稿では,レール,クリップ,ボルトを含む多種類のレール成分を検出するための深部畳み込み変圧器ネットワーク方式を提案する。
レール部品検出における効率的かつ正確な性能を実現するために,原画像から潜伏特徴を抽出する際の畳み込み構造の利点と,貴重な潜伏特徴を選択的に決定する変換器の利点を効果的に相乗化する。
提案手法は,アンカーボックスやアスペクト比,デフォルト座標,非最大抑制しきい値などの後処理といった事前設定の必要性を排除し,検出パイプラインを簡素化すると共に,限られたトレーニングデータで検出器の品質と複雑さをトレードオフできるようにする。
総合計算による研究結果から,提案手法は既存の最先端手法よりも高い性能を示した。
関連論文リスト
- Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
本稿では, Convolutional Transformer Layer (ConvFormer) を導入し, ConvFormer-based Super-Resolution Network (CFSR) を提案する。
CFSRは畳み込みベースのアプローチとトランスフォーマーベースのアプローチの両方の利点を継承する。
CFSRは計算コストと性能のバランスが最適であることを示す実験である。
論文 参考訳(メタデータ) (2024-01-11T03:08:00Z) - Efficient Visual Fault Detection for Freight Train Braking System via
Heterogeneous Self Distillation in the Wild [8.062167870951706]
本稿では,検出精度と速度を確保するため,不均一な自己蒸留フレームワークを提案する。
我々は,学習効率を向上させるために,ラベル付近の値にネットワークを集中させる新たな損失関数を用いる。
我々のフレームワークは毎秒37フレーム以上を達成でき、従来の蒸留法と比較して高い精度を維持することができる。
論文 参考訳(メタデータ) (2023-07-03T01:27:39Z) - RegFormer: An Efficient Projection-Aware Transformer Network for
Large-Scale Point Cloud Registration [73.69415797389195]
本稿では,大規模クラウドアライメントのためのエンドツーエンドトランス (RegFormer) ネットワークを提案する。
具体的には、プロジェクション対応階層変換器を提案し、長距離依存を捕捉し、外乱をフィルタする。
我々の変圧器は線形複雑であり、大規模シーンでも高い効率が保証される。
論文 参考訳(メタデータ) (2023-03-22T08:47:37Z) - Improving Transformer-based Image Matching by Cascaded Capturing
Spatially Informative Keypoints [44.90917854990362]
変換器を用いたカスケードマッチングモデル -- Cascade Feature Matching TRansformer (CasMTR) を提案する。
我々は、信頼性マップを通じてキーポイントをフィルタリングするために、単純で効果的な非最大抑圧(NMS)後処理を使用する。
CasMTRは、室内および屋外のポーズ推定および視覚的位置推定において最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-03-06T04:32:34Z) - Integral Migrating Pre-trained Transformer Encoder-decoders for Visual
Object Detection [78.2325219839805]
imTEDは、数発のオブジェクト検出の最先端を最大7.6%改善する。
MS COCOデータセットの実験は、imTEDが一貫してそのデータセットを2.8%上回っていることを示している。
論文 参考訳(メタデータ) (2022-05-19T15:11:20Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
近年、DeTRはトランスフォーマーを用いたソリューションビジョンタスクの先駆者であり、画像特徴マップを直接オブジェクト結果に変換する。
最近の変圧器を用いた画像認識モデルとTTは、一貫した効率向上を示す。
論文 参考訳(メタデータ) (2021-09-15T01:10:30Z) - Hierarchical Convolutional Neural Network with Feature Preservation and
Autotuned Thresholding for Crack Detection [5.735035463793008]
ドローンの画像はインフラ表面の欠陥の自動検査にますます使われている。
本稿では,階層型畳み込みニューラルネットワークを用いた深層学習手法を提案する。
提案手法は, 道路, 橋, 舗装の表面ひび割れの同定に応用されている。
論文 参考訳(メタデータ) (2021-04-21T13:07:58Z) - A Unified Light Framework for Real-time Fault Detection of Freight Train
Images [16.721758280029302]
貨物列車のリアルタイム故障検出は、鉄道輸送の安全と最適運転を保証する上で重要な役割を担っている。
深層学習に基づくアプローチの有望な結果にもかかわらず、貨物列車画像におけるこれらの断層検出器の性能は精度と効率の両立には程遠い。
本稿では,リソース要求の少ないリアルタイム動作をサポートしながら,検出精度を向上させるための統一光フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-31T05:10:20Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines [1.602803566465659]
ボルトは送電線で最も多くのファスナーであり、分割ピンを失う傾向にある。
タイムリーかつ効率的なトラブルシューティングを実現するために,伝送線路のボルトの自動ピン欠落検出を実現する方法は難しい問題である。
本稿では、ピン欠落検出のためのAVSCNet(Automatic Visual Shape Clustering Network)と呼ばれる自動検出モデルを構築した。
論文 参考訳(メタデータ) (2020-01-17T10:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。