Microscopic contributions to the entropy production at all times: From
nonequilibrium steady states to global thermalization
- URL: http://arxiv.org/abs/2309.11812v2
- Date: Fri, 23 Feb 2024 10:40:41 GMT
- Title: Microscopic contributions to the entropy production at all times: From
nonequilibrium steady states to global thermalization
- Authors: Ayaka Usui, Krzysztof Ptaszy\'nski, Massimiliano Esposito, Philipp
Strasberg
- Abstract summary: We numerically study microscopic contributions to the entropy production for the single electron transistor.
We find that the entropy production is dominated for most times by microscopic deviations from thermality in the baths.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on exact integration of the Schr\"odinger equation, we numerically
study microscopic contributions to the entropy production for the single
electron transistor, a paradigmatic model describing a single Fermi level
tunnel coupled to two baths of free fermions. To this end, we decompose the
entropy production into a sum of information theoretic terms and study them
across all relevant time scales, including the nonequilibrium steady state
regime and the final stage of global thermalization. We find that the entropy
production is dominated for most times by microscopic deviations from
thermality in the baths and the correlation between (but not inside) the baths.
Despite these microscopic deviations from thermality, the temperatures and
chemical potentials of the baths thermalize as expected, even though our model
is integrable. Importantly, this observation is confirmed for both initially
mixed and pure states. We further observe that the bath-bath correlations are
quite insensitive to the system-bath coupling strength contrary to intuition.
Finally, the system-bath correlation, small in an absolute sense, dominates in
a relative sense and displays pure quantum correlations for all studied
parameter regimes.
Related papers
- Thermalization in Trapped Bosonic Systems With Disorder [3.1457219084519004]
We study experimentally accessible states in a system of bosonic atoms trapped in an open linear chain with disorder.
We find that, within certain tolerances, most states in the chaotic region thermalize.
However, states with low participation ratios in the energy eigenstate basis show greater deviations from thermal equilibrium values.
arXiv Detail & Related papers (2024-07-05T19:00:02Z) - Open-system eigenstate thermalization in a noninteracting integrable model [0.0]
We argue that even in fully integrable models, the system observables exhibit thermalization when the system-bath setup is in a typical eigenstate of its Hamiltonian.
Our findings suggest that chaos and nonintegrability are not the sole drivers of thermalization.
arXiv Detail & Related papers (2024-04-17T13:16:42Z) - Extensive Long-Range Entanglement at Finite Temperatures from a Nonequilibrium Bias [0.0]
We study the entanglement properties of free fermions on a one-dimensional lattice that contains a generic charge- and energy-conserving noninteracting impurity.
We show that all these measures scale linearly with the overlap between one subsystem and the mirror image of the other.
While a simple proportionality relation between the negativity and R'enyi versions of the mutual information is observed to hold at zero temperature, it breaks down at finite temperatures.
arXiv Detail & Related papers (2024-04-16T18:00:16Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Entropy production and correlation spreading in the interaction between
particle detector and thermal baths [10.02300359702222]
We study the entropy production and correlation spreading in the interaction between Unruh-DeWitt-like particle detector and thermal baths.
We can observe that the entropy production implies quantum recurrence and shows periodicity.
arXiv Detail & Related papers (2021-11-07T11:11:34Z) - Entropy Production and the Role of Correlations in Quantum Brownian
Motion [77.34726150561087]
We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
arXiv Detail & Related papers (2021-08-05T13:11:05Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Growth of mutual information in a quenched one-dimensional open quantum
many body system [11.731315568079445]
In a dissipative system, postquench information propagates solely through entangled pairs of quasiparticles having a finite lifetime.
Remarkably, in spite of the finite lifetime of the quasiparticles, a finite steady-state value of the MI survives in times which is an artifact of nonvanishing two-point correlations.
arXiv Detail & Related papers (2020-01-27T14:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.