GIFAIR-FL: An Approach for Group and Individual Fairness in Federated
Learning
- URL: http://arxiv.org/abs/2108.02741v1
- Date: Thu, 5 Aug 2021 17:13:43 GMT
- Title: GIFAIR-FL: An Approach for Group and Individual Fairness in Federated
Learning
- Authors: Xubo Yue, Maher Nouiehed, Raed Al Kontar
- Abstract summary: In this paper we propose textttGIFAIR-FL: an approach that retains group and individual settings.
We show convergence in non-$i.i.d.$ and strongly convex settings.
Compared to existing algorithms, our method shows improved results while superior or similar prediction accuracy.
- Score: 8.121462458089143
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this paper we propose \texttt{GIFAIR-FL}: an approach that imposes group
and individual fairness to federated learning settings. By adding a
regularization term, our algorithm penalizes the spread in the loss of client
groups to drive the optimizer to fair solutions. Theoretically, we show
convergence in non-convex and strongly convex settings. Our convergence
guarantees hold for both $i.i.d.$ and non-$i.i.d.$ data. To demonstrate the
empirical performance of our algorithm, we apply our method on image
classification and text prediction tasks. Compared to existing algorithms, our
method shows improved fairness results while retaining superior or similar
prediction accuracy.
Related papers
- Bayes-Optimal Fair Classification with Linear Disparity Constraints via
Pre-, In-, and Post-processing [32.5214395114507]
We develop methods for Bayes-optimal fair classification, aiming to minimize classification error subject to given group fairness constraints.
We show that several popular disparity measures -- the deviations from demographic parity, equality of opportunity, and predictive equality -- are bilinear.
Our methods control disparity directly while achieving near-optimal fairness-accuracy tradeoffs.
arXiv Detail & Related papers (2024-02-05T08:59:47Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
A performance-promising fair algorithm with better generalizability is needed.
This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability.
arXiv Detail & Related papers (2023-09-15T13:04:55Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
We propose a model agnostic post-processing framework xOrder for achieving fairness in bipartite ranking.
xOrder is compatible with various classification models and ranking fairness metrics, including supervised and unsupervised fairness metrics.
We evaluate our proposed algorithm on four benchmark data sets and two real-world patient electronic health record repositories.
arXiv Detail & Related papers (2023-07-27T07:42:44Z) - Proportionally Representative Clustering [17.5359577544947]
We propose a new axiom proportionally representative fairness'' (PRF) that is designed for clustering problems.
Our fairness concept is not satisfied by existing fair clustering algorithms.
Our algorithm for the unconstrained setting is also the first known-time approximation algorithm for the well-studied Proportional Fairness (PF) axiom.
arXiv Detail & Related papers (2023-04-27T02:01:24Z) - Online Learning with Adversaries: A Differential-Inclusion Analysis [52.43460995467893]
We introduce an observation-matrix-based framework for fully asynchronous online Federated Learning with adversaries.
Our main result is that the proposed algorithm almost surely converges to the desired mean $mu.$
We derive this convergence using a novel differential-inclusion-based two-timescale analysis.
arXiv Detail & Related papers (2023-04-04T04:32:29Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Fair Federated Learning via Bounded Group Loss [37.72259706322158]
We propose a general framework for provably fair federated learning.
We extend the notion of Bounded Group Loss as a theoretically-grounded approach for group fairness.
We provide convergence guarantees for the method as well as fairness guarantees for the resulting solution.
arXiv Detail & Related papers (2022-03-18T23:11:54Z) - Repairing Regressors for Fair Binary Classification at Any Decision
Threshold [8.322348511450366]
We show that we can increase fair performance across all thresholds at once.
We introduce a formal measure of Distributional Parity, which captures the degree of similarity in the distributions of classifications for different protected groups.
Our main result is to put forward a novel post-processing algorithm based on optimal transport, which provably maximizes Distributional Parity.
arXiv Detail & Related papers (2022-03-14T20:53:35Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Fair Correlation Clustering [92.15492066925977]
We obtain approximation algorithms for correlation clustering under several important types of fairness constraints.
We show that fair solutions to correlation clustering can be obtained with limited increase in cost compared to the state-of-the-art (unfair) algorithms.
arXiv Detail & Related papers (2020-02-06T14:28:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.