論文の概要: Multimodal Meta-Learning for Time Series Regression
- arxiv url: http://arxiv.org/abs/2108.02842v1
- Date: Thu, 5 Aug 2021 20:50:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-10 01:11:50.843794
- Title: Multimodal Meta-Learning for Time Series Regression
- Title(参考訳): 時系列回帰のためのマルチモーダルメタラーニング
- Authors: Sebastian Pineda Arango, Felix Heinrich, Kiran Madhusudhanan, Lars
Schmidt-Thieme
- Abstract要約: メタラーニングを用いてモデルパラメータを新しい短史時系列に迅速に適応させるアイデアについて検討する。
提案手法は,12実験中9実験において,少ないデータでTSRを学習し,ベースラインよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.135152720206844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has shown the efficiency of deep learning models such as Fully
Convolutional Networks (FCN) or Recurrent Neural Networks (RNN) to deal with
Time Series Regression (TSR) problems. These models sometimes need a lot of
data to be able to generalize, yet the time series are sometimes not long
enough to be able to learn patterns. Therefore, it is important to make use of
information across time series to improve learning. In this paper, we will
explore the idea of using meta-learning for quickly adapting model parameters
to new short-history time series by modifying the original idea of Model
Agnostic Meta-Learning (MAML) \cite{finn2017model}. Moreover, based on prior
work on multimodal MAML \cite{vuorio2019multimodal}, we propose a method for
conditioning parameters of the model through an auxiliary network that encodes
global information of the time series to extract meta-features. Finally, we
apply the data to time series of different domains, such as pollution
measurements, heart-rate sensors, and electrical battery data. We show
empirically that our proposed meta-learning method learns TSR with few data
fast and outperforms the baselines in 9 of 12 experiments.
- Abstract(参考訳): 最近の研究は、時系列回帰(TSR)問題に対処するため、FCN(Fully Convolutional Networks)やRNN(Recurrent Neural Networks)といったディープラーニングモデルの効率性を示している。
これらのモデルは、一般化するために大量のデータを必要とすることもあるが、時系列はパターンを学習できるほど長くない場合もある。
そのため,学習を改善するために時系列情報を活用することが重要である。
本稿では,モデル非依存メタラーニング (MAML) \cite{finn2017model} の原案を変更することで,モデルパラメータを新しい短史時系列に迅速に適応するメタラーニングの考え方を検討する。
さらに,マルチモーダルmaml \cite{vuorio2019multimodal}の先行研究に基づいて,時系列のグローバル情報をエンコードしてメタ特徴を抽出する補助ネットワークを介してモデルのパラメータを条件付けする手法を提案する。
最後に、汚染の測定、心拍センサー、バッテリーデータなど、さまざまな領域の時系列にデータを適用する。
提案手法は,12実験中9実験において,少ないデータでTSRを学習し,ベースラインよりも優れていることを示す。
関連論文リスト
- General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
周波数領域で異なる時間粒度(または対応する周波数分解能)の時系列が異なる結合分布を示すことを示す。
時間領域と周波数領域の両方からタイムアウェア表現を学習するために,新しいFourierナレッジアテンション機構を提案する。
自己回帰的空白埋め込み事前学習フレームワークを時系列解析に初めて組み込み、生成タスクに依存しない事前学習戦略を実現する。
論文 参考訳(メタデータ) (2025-02-05T15:20:04Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Ti-MAE: Self-Supervised Masked Time Series Autoencoders [16.98069693152999]
本稿では,Ti-MAEという新しいフレームワークを提案する。
Ti-MAEは、埋め込み時系列データをランダムにマスクアウトし、オートエンコーダを学び、ポイントレベルでそれらを再構築する。
いくつかの公開実世界のデータセットの実験では、マスク付きオートエンコーディングのフレームワークが生データから直接強力な表現を学習できることが示されている。
論文 参考訳(メタデータ) (2023-01-21T03:20:23Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
スケーラブルな時系列事前学習モデル(STEP)によりSTGNNが拡張される新しいフレームワークを提案する。
具体的には、非常に長期の歴史時系列から時間パターンを効率的に学習するための事前学習モデルを設計する。
我々のフレームワークは下流のSTGNNを著しく強化することができ、事前学習モデルは時間パターンを適切にキャプチャする。
論文 参考訳(メタデータ) (2022-06-18T04:24:36Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Online learning of windmill time series using Long Short-term Cognitive
Networks [58.675240242609064]
風車農場で生成されたデータの量は、オンライン学習が従うべき最も有効な戦略となっている。
我々はLong Short-term Cognitive Networks (LSTCNs) を用いて、オンライン環境での風車時系列を予測する。
提案手法は,単純なRNN,長期記憶,Gated Recurrent Unit,Hidden Markov Modelに対して最も低い予測誤差を報告した。
論文 参考訳(メタデータ) (2021-07-01T13:13:24Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
相関した多変量時系列入力を処理できる深層学習構造時系列モデルを提案する。
モデルは、トレンド、季節性、イベントコンポーネントを明示的に学習し、抽出する。
我々は,様々な時系列データセットに関する総合的な実験を通して,そのモデルと最先端のいくつかの手法を比較した。
論文 参考訳(メタデータ) (2020-01-02T18:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。