Interpolation can hurt robust generalization even when there is no noise
- URL: http://arxiv.org/abs/2108.02883v1
- Date: Thu, 5 Aug 2021 23:04:15 GMT
- Title: Interpolation can hurt robust generalization even when there is no noise
- Authors: Konstantin Donhauser, Alexandru \c{T}ifrea, Michael Aerni, Reinhard
Heckel and Fanny Yang
- Abstract summary: We show that avoiding generalization through ridge regularization can significantly improve generalization even in the absence of noise.
We prove this phenomenon for the robust risk of both linear regression and classification and hence provide the first theoretical result on robust overfitting.
- Score: 76.3492338989419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous recent works show that overparameterization implicitly reduces
variance for min-norm interpolators and max-margin classifiers. These findings
suggest that ridge regularization has vanishing benefits in high dimensions. We
challenge this narrative by showing that, even in the absence of noise,
avoiding interpolation through ridge regularization can significantly improve
generalization. We prove this phenomenon for the robust risk of both linear
regression and classification and hence provide the first theoretical result on
robust overfitting.
Related papers
- Weakly Convex Regularisers for Inverse Problems: Convergence of Critical Points and Primal-Dual Optimisation [12.455342327482223]
We present a generalised formulation of convergent regularisation in terms of critical points.
We show that this is achieved by a class of weakly convex regularisers.
Applying this theory to learned regularisation, we prove universal approximation for input weakly convex neural networks.
arXiv Detail & Related papers (2024-02-01T22:54:45Z) - Generalization in Kernel Regression Under Realistic Assumptions [41.345620270267446]
We provide rigorous bounds for common kernels and for any amount of regularization, noise, any input dimension, and any number of samples.
Our results imply benign overfitting in high input dimensions, nearly tempered overfitting in fixed dimensions, and explicit convergence rates for regularized regression.
As a by-product, we obtain time-dependent bounds for neural networks trained in the kernel regime.
arXiv Detail & Related papers (2023-12-26T10:55:20Z) - Strong inductive biases provably prevent harmless interpolation [8.946655323517092]
This paper argues that the degree to which is harmless hinges upon the strength of an estimator's inductive bias.
Our main theoretical result establishes tight non-asymptotic bounds for high-dimensional kernel regression.
arXiv Detail & Related papers (2023-01-18T15:37:11Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized
Linear Models [33.36787620121057]
We prove a new generalization bound that shows for any class of linear predictors in Gaussian space.
We use our finite-sample bound to directly recover the "optimistic rate" of Zhou et al. (2021)
We show that application of our bound generalization using localized Gaussian width will generally be sharp for empirical risk minimizers.
arXiv Detail & Related papers (2022-10-21T16:16:55Z) - Ensembling over Classifiers: a Bias-Variance Perspective [13.006468721874372]
We build upon the extension to the bias-variance decomposition by Pfau (2013) in order to gain crucial insights into the behavior of ensembles of classifiers.
We show that conditional estimates necessarily incur an irreducible error.
Empirically, standard ensembling reducesthe bias, leading us to hypothesize that ensembles of classifiers may perform well in part because of this unexpected reduction.
arXiv Detail & Related papers (2022-06-21T17:46:35Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
We prove the first high-probability results with logarithmic dependence on the confidence level for methods for solving monotone and structured non-monotone VIPs.
Our results match the best-known ones in the light-tails case and are novel for structured non-monotone problems.
In addition, we numerically validate that the gradient noise of many practical formulations is heavy-tailed and show that clipping improves the performance of SEG/SGDA.
arXiv Detail & Related papers (2022-06-02T15:21:55Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.