ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
- URL: http://arxiv.org/abs/2108.02938v1
- Date: Fri, 6 Aug 2021 04:43:13 GMT
- Title: ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
- Authors: Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh
Yoon
- Abstract summary: We propose Iterative Latent Variable Refinement (ILVR) to guide the generative process in DDPM to generate high-quality images.
The proposed ILVR method generates high-quality images while controlling the generation.
- Score: 22.84873720309945
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Denoising diffusion probabilistic models (DDPM) have shown remarkable
performance in unconditional image generation. However, due to the
stochasticity of the generative process in DDPM, it is challenging to generate
images with the desired semantics. In this work, we propose Iterative Latent
Variable Refinement (ILVR), a method to guide the generative process in DDPM to
generate high-quality images based on a given reference image. Here, the
refinement of the generative process in DDPM enables a single DDPM to sample
images from various sets directed by the reference image. The proposed ILVR
method generates high-quality images while controlling the generation. The
controllability of our method allows adaptation of a single DDPM without any
additional learning in various image generation tasks, such as generation from
various downsampling factors, multi-domain image translation, paint-to-image,
and editing with scribbles.
Related papers
- Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
Diffusion models (DMs) excel in unconditional generation, as well as on applications such as image editing and restoration.
This work aims to unlock the full potential of consistency trajectory models (CTMs) by proposing generalized CTMs (GCTMs)
We discuss the design space of GCTMs and demonstrate their efficacy in various image manipulation tasks such as image-to-image translation, restoration, and editing.
arXiv Detail & Related papers (2024-03-19T07:24:54Z) - Referee Can Play: An Alternative Approach to Conditional Generation via
Model Inversion [35.21106030549071]
Diffusion Probabilistic Models (DPMs) are dominant force in text-to-image generation tasks.
We propose an alternative view of state-of-the-art DPMs as a way of inverting advanced Vision-Language Models (VLMs)
By directly optimizing images with the supervision of discriminative VLMs, the proposed method can potentially achieve a better text-image alignment.
arXiv Detail & Related papers (2024-02-26T05:08:40Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
This paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior.
Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs)
We show that our approach can consistently improve the overall quality and semantic coherence of inpainted images with only 10% additional computational overhead.
arXiv Detail & Related papers (2023-11-28T21:14:02Z) - Improving Denoising Diffusion Probabilistic Models via Exploiting Shared
Representations [5.517338199249029]
SR-DDPM is a class of generative models that produce high-quality images by reversing a noisy diffusion process.
By exploiting the similarity between diverse data distributions, our method can scale to multiple tasks without compromising the image quality.
We evaluate our method on standard image datasets and show that it outperforms both unconditional and conditional DDPM in terms of FID and SSIM metrics.
arXiv Detail & Related papers (2023-11-27T22:30:26Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - CDPMSR: Conditional Diffusion Probabilistic Models for Single Image
Super-Resolution [91.56337748920662]
Diffusion probabilistic models (DPM) have been widely adopted in image-to-image translation.
We propose a simple but non-trivial DPM-based super-resolution post-process framework,i.e., cDPMSR.
Our method surpasses prior attempts on both qualitative and quantitative results.
arXiv Detail & Related papers (2023-02-14T15:13:33Z) - SinDDM: A Single Image Denoising Diffusion Model [28.51951207066209]
We introduce a framework for training a Denoising diffusion model on a single image.
Our method, which we coin SinDDM, learns the internal statistics of the training image by using a multi-scale diffusion process.
It is applicable in a wide array of tasks, including style transfer and harmonization.
arXiv Detail & Related papers (2022-11-29T20:44:25Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved impressive performance on various generation tasks.
In practice DDPMs often need hundreds even thousands of denoising steps to obtain a high-quality sample.
We propose a principled acceleration strategy, referred to as Early-Stopped DDPM (ES-DDPM), for DDPMs.
arXiv Detail & Related papers (2022-05-25T06:40:09Z) - Denoising Diffusion Implicit Models [117.03720513930335]
We present denoising diffusion implicit models (DDIMs) for iterative implicit probabilistic models with the same training procedure as DDPMs.
DDIMs can produce high quality samples $10 times$ to $50 times$ faster in terms of wall-clock time compared to DDPMs.
arXiv Detail & Related papers (2020-10-06T06:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.