Denoising Diffusion Implicit Models
- URL: http://arxiv.org/abs/2010.02502v4
- Date: Wed, 5 Oct 2022 20:19:21 GMT
- Title: Denoising Diffusion Implicit Models
- Authors: Jiaming Song, Chenlin Meng, Stefano Ermon
- Abstract summary: We present denoising diffusion implicit models (DDIMs) for iterative implicit probabilistic models with the same training procedure as DDPMs.
DDIMs can produce high quality samples $10 times$ to $50 times$ faster in terms of wall-clock time compared to DDPMs.
- Score: 117.03720513930335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising diffusion probabilistic models (DDPMs) have achieved high quality
image generation without adversarial training, yet they require simulating a
Markov chain for many steps to produce a sample. To accelerate sampling, we
present denoising diffusion implicit models (DDIMs), a more efficient class of
iterative implicit probabilistic models with the same training procedure as
DDPMs. In DDPMs, the generative process is defined as the reverse of a
Markovian diffusion process. We construct a class of non-Markovian diffusion
processes that lead to the same training objective, but whose reverse process
can be much faster to sample from. We empirically demonstrate that DDIMs can
produce high quality samples $10 \times$ to $50 \times$ faster in terms of
wall-clock time compared to DDPMs, allow us to trade off computation for sample
quality, and can perform semantically meaningful image interpolation directly
in the latent space.
Related papers
- EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Parallel Sampling of Diffusion Models [76.3124029406809]
Diffusion models are powerful generative models but suffer from slow sampling.
We present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel.
arXiv Detail & Related papers (2023-05-25T17:59:42Z) - UDPM: Upsampling Diffusion Probabilistic Models [33.51145642279836]
Denoising Diffusion Probabilistic Models (DDPM) have recently gained significant attention.
DDPMs generate high-quality samples from complex data distributions by defining an inverse process.
Unlike generative adversarial networks (GANs), the latent space of diffusion models is less interpretable.
In this work, we propose to generalize the denoising diffusion process into an Upsampling Diffusion Probabilistic Model (UDPM)
arXiv Detail & Related papers (2023-05-25T17:25:14Z) - Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps [23.144083737873263]
Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images.
Previous work has attempted to mitigate this issue by perturbing inputs during training.
We propose a novel sampling method that we propose, without retraining the model.
arXiv Detail & Related papers (2023-05-24T21:39:27Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
arXiv Detail & Related papers (2023-01-19T09:48:07Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved impressive performance on various generation tasks.
In practice DDPMs often need hundreds even thousands of denoising steps to obtain a high-quality sample.
We propose a principled acceleration strategy, referred to as Early-Stopped DDPM (ES-DDPM), for DDPMs.
arXiv Detail & Related papers (2022-05-25T06:40:09Z) - Pseudo Numerical Methods for Diffusion Models on Manifolds [77.40343577960712]
Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples.
DDPMs require hundreds to thousands of iterations to produce final samples.
We propose pseudo numerical methods for diffusion models (PNDMs)
PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup)
arXiv Detail & Related papers (2022-02-20T10:37:52Z) - Improved Denoising Diffusion Probabilistic Models [4.919647298882951]
We show that DDPMs can achieve competitive log-likelihoods while maintaining high sample quality.
We also find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes.
We show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable.
arXiv Detail & Related papers (2021-02-18T23:44:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.